Government Governance in the Big Data Era: Digital Government and Corporate R&D Manipulation

Meng Yuan, Yang Rong

The Journal of World Economy ›› 2024, Vol. 47 ›› Issue (1) : 118-149.

PDF(1232 KB)
PDF(1232 KB)
The Journal of World Economy ›› 2024, Vol. 47 ›› Issue (1) : 118-149.

Government Governance in the Big Data Era: Digital Government and Corporate R&D Manipulation

  • Meng Yuan, Yang Rong
Author information +
History +

Abstract

Using a sample of A-share listed companies between 2014 and 2021 and based on the specific industrial policy of “Management Measures for the Recognition of High-tech Enterprises”, this paper employs the bunching method to examine whether companies have obtained high-tech enterprise status through R&D manipulation. Drawing on this, and using the reform of big data management institutions in various regions as a quasi-natural experiment, the paper employs the difference-in-differences (DID) model to explore the impact that digital government exerts on corporate R&D manipulation. The research reveals that the phenomenon of R&D manipulation is often prevalent among China’s listed companies. However, the development of digital government has significantly suppressed corporate R&D manipulation activities. The key reason for all this lies in the fact that digital government development has been effectively enhancing the government’s capacity to oversee corporate R&D manipulation. Furthermore, the influence of digital government on corporate R&D manipulation is particularly prominent in samples of non-state-owned enterprises and in some cases where internet and media supervision is weak. This paper offers theoretical and empirical evidence for the government to leverage industrial policies more effectively in the new digital era.

Key words

digital government / R&D manipulation; / industrial policy / big data management institution reform

Cite this article

Download Citations
Meng Yuan, Yang Rong. Government Governance in the Big Data Era: Digital Government and Corporate R&D Manipulation[J]. The Journal of World Economy, 2024, 47(1): 118-149

References

北京大学课题组、黄璜(2020):《平台驱动的数字政府:能力、转型与现代化》,《电子政务》第7期.
陈德球、胡晴(2022):《数字经济时代下的公司治理研究:范式创新与实践前沿》,《管理世界》第6期.
戴小勇、成力为(2019):《产业政策如何更有效:中国制造业生产率与加成率的证据》,《世界经济》第3期.
樊勇、李昊楠、管淳(2020):《小微企业所得税优惠间断点是否存在聚束效应》,《世界经济》第3期.
范子英、程可为、冯晨(2022):《用地价格管制与企业研发创新:来自群聚识别的证据》,《管理世界》第8期.
高奇琦(2023):《国家数字能力:数字革命中的国家治理能力建设》,《中国社会科学》第1期.
高小平(2023):《中国式现代化公共管理创新的重大探索——对2023年机构改革的理论分析》,《学海》第5期.
古朴、翟士运(2020):《监管不确定性与企业盈余质量——基于证监会换届的准自然实验》,《管理世界》第12期.
黄璜(2020):《数字政府:政策、特征与概念》,《治理研究》第3期.
黄璜、孙学智(2018):《中国地方政府数据治理机构的初步研究:现状与模式》,《中国行政管理》第12期.
黄璜、谢思娴、姚清晨(2022):《数字化赋能治理协同:数字政府建设的“下一步行动”》,《电子政务》第4期.
黄其松(2022):《数字时代的国家理论》,《中国社会科学》第10期.
江小涓(2018):《大数据时代的政府管理与服务:提升能力及应对挑战》,《中国行政管理》第9期.
孟庆国、林彤、乔元波、王理达(2020):《中国地方政府大数据管理机构建设与演变——基于第八次机构改革的对比分析》,《电子政务》第10期.
孟天广(2022):《数字治理生态:数字政府的理论迭代与模型演化》,《政治学研究》第5期.
米加宁、彭康珺、章昌平(2020):《大数据能驱动地方政府机构改革吗?》,《电子政务》第1期.
孙天阳、陆毅、成丽红(2022):《港口管理“放管服”改革与出口结构升级》,《世界经济》第3期.
唐松、伍旭川、祝佳(2020):《数字金融与企业技术创新——结构特征、机制识别与金融监管下的效应差异》,《管理世界》第5期.
唐要家、王钰、唐春晖(2022):《数字经济、市场结构与创新绩效》,《中国工业经济》第10期.
姚期智、郁昱(2022):《奋力攻坚关键核心技术加快构建数据基础制度》,《光明日报》12月23日第10版.
王伟玲(2021):《我国数字政府顶层设计的理念辨析与实践指向》,《行政管理改革》第6期.
王伟玲(2022):《中国数字政府形态演进和发展瓶颈》,《行政管理改革》第5期.
杨国超、刘静、廉鹏、芮萌(2017):《减税激励、研发操纵与研发绩效》,《经济研究》第8期.
杨国超、芮萌(2020):《高新技术企业税收减免政策的激励效应与迎合效应》,《经济研究》第9期.
杨国超、张李娜(2021):《产业政策何以更有效?——基于海量媒体报道数据与研发操纵现象的证据》,《经济学(季刊)》第6期.
杨瑞龙、侯方宇(2019):《产业政策的有效性边界——基于不完全契约的视角》,《管理世界》第10期.
叶战备(2021):《政务数据治理的现实推进及其协同逻辑——以N市为例》,《中国行政管理》第6期.
张克(2019):《省级大数据局的机构设置与职能配置:基于新一轮机构改革的实证分析》:《电子政务》第6期.
张克中、欧阳洁、李文健(2020):《缘何“减税难降负”:信息技术、征税能力与企业逃税》,《经济研究》第3期.
Acemoglu D.; Akcigit U. and Celik M. A. “Radical and Incremental Innovation: The Roles of Firms, Managers, and Innovator.” American Economic Journal: Macroeconomics,2022, 14(3), pp.199-249.
Acemoglu, D. and Restrepo, P. “The Race Between Man and Machine: Implications of Technology for Growth, Factor Shares,Employment.” The American Economic Review, 2018, 108(6), pp.1488-1542.
Aghion P.; Jones B. F. and Jones C. I.“Artificial Intelligence and Economic Growth,” in A. Agrawal; J. Gans and A. Goldfarb ed., The Economics of Artificial Intelligence: An Agenda. Chicago:University of Chicago Press, 2019.
Ai, C. and Norton, E. C. “Interaction Terms in Logit and Probit Models.” Economics Letters, 2003, 80(1), pp.123-129.
Akcigit U.; Grigsby J.; Nicholas T. and Stantcheva S. “Taxation and Innovation in the Twentieth Century.” The Quarterly Journal of Economics,2022, 137(1), pp.329-385.
Arrow K.“Economic Welfare and the Allocation of Resources for Invention,” in R. Nelson eds., The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton: Princeton University Press, 1962.
Beraja M.; Kao A.; Yang D. Y. and Yuchtman, N. “AI-tocracy.” The Quarterly Journal of Economics,2023a, 138(3), pp.1349-1402.
Beraja M.; Yang D. Y. and Yuchtman N. “Data-Intensive Innovation and the State: Evidence from AI Firms in China.” Review of Economic Studies,2023b, 90(4), pp.1701-1723.
Bi K.; Xie L.; Zhang H.; Chen X.; Gu X. and Tian, Q. “Accurate Medium-Range Global Weather Forecasting with 3D Neural Networks.” Nature,2023, 619(7090), pp.533-538.
Bloom N.; Griffith R. and Van Reenen, J. “Do R&D Tax Credits Work? Evidence from a Panel of Countries1979-1997.” Journal of Public Economics, 2002, 85(1), pp.1-31.
Bloom N.; Schankerman M. and Van Reenen, J. “Identifying Technology Spillovers and Product Market Rivalry.” Econometrica,2013, 81(4), pp.1347-1393.
Bloom N.; Van Reenen J. and Williams, H. “A Toolkit of Policies to Promote Innovation.” Journal of Economic Perspectives,2019, 33(3), pp.163-184.
Borusyak K.; Jaravel X. and Spiess J.“Revisiting Event Study Designs: Robust and Efficient Estimation.” SSRN working paper No. 2826228, 2021.
Callaway, B. and Sant’Anna, P. H. “Difference-in-Differences with Multiple Time Periods.” Journal of Econometrics, 2021, 225(2), pp.200-230.
Cengiz D.; Dube A.; Lindner A. and Zipperer, B. “The Effect of Minimum Wages on Low-Wage Jobs.” The Quarterly Journal of Economics,2019, 134(3), pp.1405-1454.
Chen Z.; Liu Z.; Suárez Serrato, J. C. and Xu, D. Y. “Notching R&D Investment with Corporate Income Tax Cuts in China.” The American Economic Review, 2021, 111(7), pp.2065-2100.
Cong L. W.; Xie D. and Zhang, L. “Knowledge Accumulation, Privacy, and Growth in a Data Economy.” Management Science,2021, 67(10), pp.6480-6492.
Goodman-Bacon, A. “Difference-in-Differences with Variation in Treatment Timing.” Journal of Econometrics, 2021, 225(2), pp.254-277.
Jones, C. I. and Tonetti, C. “Nonrivalry and the Economics of Data.” The American Economic Review, 2020, 110(9), pp.2819-2858.
Jones, C. I. and Williams, J. C. “Measuring the Social Return to R&D.” The Quarterly Journal of Economics, 1998, 113(4), pp.1119-1135.
La Ferrara E.; Chong A. and Duryea S. “Soap Operas and Fertility: Evidence from Brazil.” American Economic Journal: Applied Economics,2012, 4(4), pp.1-31.
LeCun Y.; Bengio Y. and Hinton, G. “Deep Learning.” Nature,2015, 521(7553), pp.436-444.
Li P.; Lu Y. and Wang, J. “Does Flattening Government Improve Economic Performance? Evidence from China.” Journal of Development Economics,2016, 123, pp.18-37.
Mastrobuoni, G. “Crime is Terribly Revealing: Information Technology and Police Productivity.” The Review of Economic Studies, 2020, 87(6), pp.2727-2753.
Romer, P. M. “Endogenous Technological Change.” Journal of Political Economy, 1990, 98(5, Part 2), pp.S71-S102.
Wooldridge, J. M. “Simple Approaches to Nonlinear Difference-in-Differences with Panel Data.” The Econometrics Journal, 2023, 26(3), pp.C31-C66.
PDF(1232 KB)

5814

Accesses

0

Citation

Detail

Sections
Recommended

/