REFERENCES
(1) You, J. W.; Bongu, S. R.; Bao, Q.; Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects.
Nanophotonics 2019, 8, 6397.
(2) Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29,
160588629.
(3) Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano
Lett. 2010, 10, 12711275.
(4) Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with
thickness-modulated optical energy gap. Nano Lett. 2012, 12, 36953700.
(5) Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; Neill, A. O.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z.; Zhang, H. Z.; Coleman, J. N.;
Zhang, L.; Blau, W. J. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 92609267.
(6) Feng, C.; Zhang, X. Y.; Wang, J.; Liu, Z. J.; Cong, Z. H.; Rao, H.; Wang, Q. P.; Fang, J. X. Passively mode-locked Nd3+:YVO4 laser using a
molybdenum disulfide as saturable absorber. Opt. Mater. Express 2016, 6, 13581366.
(7) Wang, K.; Yang, K.; Zhang, X.; Zhao, S.; Luan, C.; Liu, C.; Wang, J.; Xu, X.; Xu, J. Passively Q-switched laser at 1.3 μm with few-layered MoS2
saturable absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 7175.
(8) Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A. Role of precursors' ratio for growth of two-dimensional MoS2 structure and investigation on it
s nonlinear optical properties. Thin Solid Films 2018, 663, 3743.
(9) Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast
optical switching for use in harsh environments. ACS Nano 2013, 7, 39053911.
(10) Wu, K.; Chen, B. H.; Zhang, X. Y.; Zhang, S. F.; Guo, C. S.; Li, C.; Xiao, P. S.; Wang, J.; Zhou, L. J.; Zou, W. W.; Chen, J. P. High-performance
mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun. 2018, 406, 214229.
(11) Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton dynamics in suspended monolayer and
few-layer MoS2 2D crystals. ACS Nano 2013, 7, 10721080.
(12) Cunningham, P. D.; McCreary, K. M.; Hanbicki, A. T.; Currie, M.; Jonker, B. T.; Hayden, L. M. Charge trapping and exciton dynamics in large-area
CVD grown MoS2. J. Phys. Chem. C 2016, 120, 58195826.
(13) Wang, Q.; Ge, S.; Li, X.; Qiu, J.; Ji, Y.; Feng, J.; Sun, D. Valley carrier dynamics in monolayer molybdenum disulphide from helicity resolved
ultrafast pump-probe spectroscopy. ACS Nano 2013, 7, 1108711093.
(14) Wang, S.; Yu, H.; Zhang, H.; Wang, A.; Zhao, M.; Chen, Y.; Mei, L.; Wang, J. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26,
35383544.
(15) Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the
surface. Nat. Phys. 2009, 5, 438442.
(16) Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber.
Appl. Phys. Lett. 2012, 101, 2111064.
(17) He, X.; Zhang, H.; Lin, W.; Wei, R.; Qiu, J.; Zhang, M.; Hu, B. PVP-Assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates:
application in passively Q-switched fiber laser. Sci. Rep. 2015, 5, 1586810.
(18) Wang, Y. R.; Lee, P.; Zhang, B. T.; Sang, Y. H.; He, J. L.; Liu, H.; Lee, C. K. Optical nonlinearity engineering of a bismuth telluride saturable
absorber and application of a pulsed solid state laser therein. Nanoscale 2017, 9, 1910019107.
(19) Yang, J.; Tian, K.; Li, Y.; Dou, X.; Ma, Y.; Han, W.; Xu, H.; Liu, J. Few-layer Bi2Te3: an effective 2D saturable absorber for passive Q-switching of
compact solid-state lasers in the 1-μm region. Opt. Express 2018, 26, 2137921389.
(20) Yin, K.; Zhang, B.; Li, L.; Jiang, T.; Zhou, X.; Hou, J. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm.
Photonics Res. 2015, 3, 7276.
(21) Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419425.
(22) Neupane, G. P.; Zhou, K.; Chen, S.; Yildirim, T.; Zhang, P.; Lu, Y. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future
devices. Small 2019, 15, 180473316.
(23) Zheng, W.; Zheng, B.; Yan, C.; Liu, Y.; Sun, X.; Qi, Z.; Yang, T.; Jiang, Y.; Huang, W.; Fan, P.; Jiang, F.; Ji, W.; Wang, X.; Pan, A. Direct vapor
growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 18022049.
(24) Hong, X.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin
MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682686.
(25) Bellus, M. Z.; Li, M.; Lane, S. D.; Ceballos, F.; Cui, Q.; Zeng, X. C.; Zhao, H. Type-I van der Waals heterostructure formed by MoS2 and ReS2
monolayers. Nanoscale Horiz. 2017, 2, 3136.
(26) Sun, X.; Zhang, B.; Li, Y.; Luo, X.; Li, G.; Chen, Y.; Zhang, C.; He, J. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der
Waals heterostructures and their application in solid-state bulk lasers. ACS Nano 2018, 12, 1137611385.
(27) Luo, S.; Qi, X.; Li, J.; Ren, L.; Guo, G.; Peng, Q.; Li, J.; Zhong, J. Significant photoluminescence quenching and charge transfer in the MoS2/Bi2Te3
heterostructure. J. Phys. Chem. Solids 2019, 12, 337342.
(28) Sung, J. H.; Cha, S.; Heo, H.; Sim, S.; Kim, J.; Choi, H.; Jo, M. H. Ultrafast hot-carrier photovoltaics of type-I monolayer heterojunctions in the
broad spectral ranges. ACS Photonics 2017, 4, 429434.
(29) Zheng, J.; Yan, X.; Lu, Z.; Qiu, H.; Xu, G.; Zhou, X.; Wang, P.; Pan, X.; Liu, K.; Jiao, L. High-mobility multilayered MoS2 flakes with low contact
resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 16045406.
(30) Song, J.; Xia, F.; Zhao, M.; Zhong, Y. L.; Li, W.; Loh, K. P.; Caruso, R. A.; Bao, Q. Solvothermal growth of bismuth chalcogenide nanoplatelets by
the oriented attachment mechanism: an in situ PXRD study. Chem. Mater. 2015, 27, 34713482.
(31) Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer
printing. J. Am. Chem. Soc. 2008, 130, 1261212613.
(32) Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; Huang, J.; Li, J.; Li, T.; Song, Y.; Zhang, X. Raman scattering investigation of Bi2Te3 hexagonal
nanoplates prepared by a solvothermal process in the absence of NaOH. J. Alloys Compd. 2011, 509, 51475151.
(33) Qi, X.; Ma, W.; Zhang, X.; Zhang, C. Raman characterization and transport properties of morphology-dependent two-dimensional Bi2Te3 nanofilms.
Appl. Surf. Sci. 2018, 457, 4148.
(34) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4,
26952700.
(35) Aleithan, S. H.; Livshits, M. Y.; Khadka, S.; Rack, J. J.; Kordesch, M. E.; Stinaff, E. Broadband femtosecond transient absorption spectroscopy for a
CVD MoS2 monolayer. Phys. Rev. B 2016, 94, 0354457.
(36) Pogna, E. A.; Marsili, M.; De Fazio, D.; Dal Conte, S.; Manzoni, C.; Sangalli, D.; Yoon, D.; Lombardo, A.; Ferrari, A. C.; Marini, A.; Cerullo, G.;
Prezzi, D. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 2016, 10, 11821188.
(37) Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.;
Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Castro Neto, A. H.; Novoselov, K. S. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 13111314.
(38) Jiang, Y.; Miao, L.; Jiang, G.; Chen, Y.; Qi, X.; Jiang, X. F.; Zhang, H.; Wen, S. Broadband and enhanced nonlinear optical response of
MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 2015, 5, 1-12.
(39) Mu, H.; Wang, Z.; Yuan, J.; Xiao, S.; Chen, C.; Chen, Y.; Chen, Y.; Song, J.; Wang, Y.; Xue, Y.; Zhang, H.; Bao, Q. Graphene-Bi2Te3 heterostructure
as saturable absorber for short pulse generation. ACS Photonics 2015, 2, 832841.
(40) Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for
ultra-fast photonics. Opt. Express 2014, 22, 72497260.
(41) Ye, Y.; Xian, Y.; Cai, J.; Lu, K.; Liu, Z.; Shi, T.; Du, J.; Leng, Y.; Wei, R.; Wang, W.; Liu, X.; Bi, G.; Qiu, J. Linear and nonlinear optical properties
of few-layer exfoliated SnSe nanosheets. Adv. Opt. Mater. 2019, 7, 18005798.
(42) Ceballos, F.; Cui, Q.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 1168111688.
(43) Kime, G.; Leontiadou, M. A.; Brent, J. R.; Savjani, N.; O’Brien, P.; Binks, D. Ultrafast charge dynamics in dispersions of monolayer MoS2
nanosheets. J. Phys. Chem. C 2017, 121, 2241522421.
(44) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 1368054.
(45) Wang, Y. Z.; Guo, Z. Y.; You, J.; Zhang, Z.; Zheng, X.; Cheng, X. G. Ultrafast nonlinear optical excitation behaviors of mono- and few-layer two
dimensional MoS2. Photonic Sensors 2019, 9, 110.
(46) Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide
MoS2. Nano Lett. 2015, 15, 82048210.
|