REFERENCES
(1) Zhang, S. W.; Cheng, P. Recent advances in the construction of lanthanide-copper heterometallic metal-organic frameworks. CrystEngComm. 2015, 17, 4250–4271.
(2) Chen, W. P.; Liao, P. Q.; Yu, Y. Z.; Zheng, Z. P.; Chen, X. M.; Zheng, Y. Z. A mixed-ligand approach for a gigantic and hollow heterometallic cage {Ni64RE96} for gas separation and magnetic cooling applications. Angew. Chem., Int. Ed. 2016, 55, 9375−9379.
(3) Zhu, Z. H.; Guo, M.; Li, X. L.; Tang, J. K. Molecular magnetism of lanthanide: advances and perspectives. Coord. Chem. Rev. 2019, 378, 350−364.
(4) (a) Cheng, J. W.; Zheng, S. T.; Yang, G. Y. Incorporating distinct metal clusters to construct diversity of 3D pillared-layer lanthanide-transition-metal frameworks. Inorg. Chem. 2008, 47, 4930−4935.
(b) Cheng, J. W.; Zheng, S. T.; Yang, G. Y. A series of lanthanide-transition metal frameworks based on 1-, 2-, and 3D metal-organic motifs linked by different 1D copper(I) halide. Inorg. Chem. 2007, 46, 10261−10267.
(5) (a) Gu, X. Y.; Jin, C. C.; Cheng, J. W. A series of lanthanide-organic frameworks constructed by Ln4(OH)4 clusters and mixed ligands. Chin. J. Struct. Chem. 2019, 38, 103−108.
(b) Jin, C. C.; Chen, Z. B.; Cheng, J. W. An unusual (3,11)-connected network constructed by tri-nuclear lanthanide building units and mixed ligands. Chin. J. Struct. Chem. 2020, 39, 104−109.
(6) Cheng, J. W.; Yang, G. Y. Hydrothermal synthesis of lanthanide and lanthanide-transition-metal cluster organic frameworks via synergistic coordination strategy. Struct. Bond. 2017, 173, 97–120.
(7) Zheng, X. Y.; Zhang, H.; Wang, Z. X.; Liu, P. X.; Du, M. H.; Han, Y. Z.; Wei, R. J.; Ouyang, Z. W.; Kong, X. J.; Zhuang, G. L.; Long, L. S.; Zheng, L. S. New insight into magnetic interaction in monodisperse Gd12Fe14 metal cluster. Angew. Chem., Int. Ed. 2017, 56, 11475−11479.
(8) Liu, D. P.; Peng, J. B.; Lin, X. P.; Huang, Q.; Kong, X. J.; Long, L. S.; Huang, R. B.; Zheng, L. S. Myo-inositol supported heterometallic Dy24M2 (M = Ni, Mn) cages. CrystEngComm. 2014, 16, 5527−5530.
(9) Zhang, Z. M.; Pan, L. Y.; Lin, W. Q.; Leng, J. D.; Guo, F. S.; Chen, Y. C.; Liu, J. L.; Tong, M. L. Wheel-shaped nanoscale 3d−4f {CoII16LnIII24} clusters (Ln = Dy and Gd). Chem. Commun. 2013, 49, 8081−8083.
(10) Zhou, Y. F.; Hong, M. C.; Wu, X. T. Lanthanide-transition metal coordination polymers based on multiple N and O-donor ligands.
Chem. Commun. 2006, 135–143.
(11) Huang, Y. G.; Jiang, F. L.; Hong, M. C. Magnetic lanthanide-transition-metal organic-inorganic hybrid materials: from discrete clusters to extended frameworks. Coord. Chem. Rev. 2009, 253, 2814–2834.
(12) Xiang, S. C.; Hu, S. M.; Sheng, T. L.; Fu, R. B.; Wu, X. T.; Zhang, X. D. A fan-shaped polynuclear Gd6Cu12 amino acid cluster: a “hollow” and ferromagnetic [Gd6(μ3-OH)8] octahedral core encapsulated by six [Cu2] glycinato blade fragments. J. Am. Chem. Soc. 2007, 129, 15144–15146.
(13) Zhang, M. B.; Zhang, J.; Zheng, S. T.; Yang, G. Y. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem. Int. Ed. 2005, 44, 1385–1388.
(14) (a) Fang, W. H.; Yang, G. Y. Induced aggregation and synergistic coordination strategy in cluster organic architectures. Acc. Chem. Res. 2018, 51, 2888−2896.
(b) Fang, W. H.; Cheng, J. W.; Yang, G. Y. Two series of sandwich frameworks based on two different kinds of nanosized lanthanide(III) and copper(I) wheel cluster units. Chem. Eur. J. 2014, 20, 2704 –2711.
(15) (a) Cheng, J. W.; Zhang, J.; Zheng, S. T.; Zhang, M. B.; Yang, G. Y. Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. Angew Chem. Int. Ed. 2006, 45, 73–77.
(b) Cheng, J. W; Zhang, J.; Zheng, S. T.; Yang, G. Y. Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands. Chem. Eur. J. 2008, 14, 88–97.
(16) Kong, X. J.; Long, L. S.; Zheng, Z. P.; Huang, R. B.; Zheng, L. S. Keeping the ball rolling: fullerene-like molecular clusters. Acc. Chem. Res. 2010, 43, 201−209.
(17) Zheng, X. Y.; Kong, X. J.; Zheng, Z. P.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers. Acc. Chem. Res. 2018, 51, 517−525.
(18) Kong, X. J.; Ren, Y. P.; Long, L. S.; Zheng, Z. P.; Huang, R. B.; Zheng, L. S. A keplerate magnetic cluster featuring an icosidodecahedron of Ni(II) ions encapsulating a dodecahedron of La(III) ions. J. Am. Chem. Soc. 2007, 129, 7016−7017.
(19) Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.
(20) (a) Lu, D. F.; Hong, Z. F.; Xie, J.; Kong, X. J.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-titanium oxo clusters as luminescent molecular thermometers with high quantum yields. Inorg. Chem. 2017, 56, 12186−12192.
(b) Lu, D. F.; Kong, X. J.; Lu, T.; Long, L. B.; Zheng, L. S. Heterometallic lanthanide-titanium oxo clusters: a new family of water oxidation catalysts. Inorg. Chem. 2017, 56, 1057−1060.
(c) Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem. Int. Ed. 2018, 57, 10976–10979.
(21) Lv, Y. K.; Willkomm, J.; Leskes, M.; Steiner, A.; King, T. C.; Gan, L.; Reisner, E.; Wood, P. T.; Wright, D. S. Formation of Ti28Ln
cages, the highest nuclearity polyoxotitanates (Ln = La, Ce). Chem. Eur. J. 2012, 18, 11867−11870.
(22) Zhang, G. L.; Wang, S.; Hou, J. L.; Mo, C.; Que, C. J.; Zhu, Q. Y.; Dai, J. A lanthanide-titanium (LnTi11) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst. Dalton Trans. 2016, 45, 17681−17686.
(23) Wang, S.; Su, H. C.; Yu, L.; Zhao, X. W.; Qian, L. W.; Zhu, Q. Y.; Dai, J. Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligands. Dalton Trans. 2015, 44, 1882−1888.
(24) Chen, W. P.; Singleton, J.; Qin, L.; Camón, A.; Engelhardt, L.; Luis , F.; Winpenny, R. E. P.; Zheng, Y. Z. Quantum monte Carlo simulations of a giant {Ni21Gd20} cage with a S = 91 spin ground state. Nat. Commun. 2018, 9, 2107.
(25) (a) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997;
(b) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany 1997.
(26) Crystal data for 1: Mr = 992.57, monoclinic, C2/c, a = 19.6099(11), b = 23.3564(11), c = 19.0877(9) Å, V = 8605.6(8) Å3, Z = 8, Dc = 1.532 cm−3, μ = 1.883 mm−1, S = 1.114. The final least-squares refinements converged at R (wR) = 0.0452 (0.1443) and for 8277 reflections with I > 2σ(I).
|