REFERENCES
(1) Huynh M. H. V.; Hiskey M. A.; Chavez D. E.; Naud D. L.; Gilardi R. D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C−N Compound. J. Am. Chem. Soc. 2005, 127, 1253712543.
(2) Gutowski K. E.; Rogers R. D.; Dixon D. A. Accurate Thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-Triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J. Phys. Chem. B 2007, 111, 47884800.
(3) Li B.; Zhou M.; Peng J.; Li L.; Guo Y. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J. Mol. Model. 2019, 25, 2328.
(4) Shu X.; Tian Y.; Song G.; Zhang H.; Kang B.; Zhang C.; Liu Y.; Liu X.; Sun J. Thermal expansion and theoretical density of 2,2′,4,4′,6,6′-hexanitrostilbene. J. Mater. Sci. 2011, 46, 25362540.
(5) Li Y.; Feng X.; Liu H.; Hao J.; Redfern S. A. T.; Lei W.; Liu D.; Ma Y. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat. Commun. 2018, 9, 722728.
(6) Wu J.; Huang Y.; Yang L.; Geng D.; Wang F.; Wang H.; Chen L. Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ). ChemPhysChem 2018, 19, 26832695.
(7) Liu F. L.;Liu Y.; Zhang L.;Wu Y. M. A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry. Chinese J. Struct. Chem. 2012, 31, 677682.
(8) Mei Z.;Li X. H.;Cui H. L.;Wang H. X.;Zhang R. Z. Theoretical studies on the structure and detonation properties of a furazan- based energetic macrocycle compound. Chinese J. Struct. Chem. 2016, 35, 1624.
(9) Smith G. D.; Bharadwaj R. K. Quantum chemistry based force field for simulations of HMX. J. Phys. Chem. B 1999, 103, 35703575.
(10) Brill T. B.; Gongwer P. E.; Williams G. K. Thermal decomposition of energetic materials. 66. kinetic compensation effects in HMX, RDX, and NTO. J. Phys. Chem. 1994, 98, 1224212247.
(11) Alavi G.; Chung M.; Lichwa J.; D’Alessio M.; Ray C. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: A laboratory and modeling study. J. Hazard. Mater. 2011, 185, 16001604.
(12) Ariyarathna T.; Ballentine M.; Vlahos P.; Smith R. W.; Cooper C.; Bohlke J. K.; Fallis S.; Groshens T. J.; Tobias C. Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX]. Sci. Total. Environ. 2019, 647, 369378.
(13) Eberly J. O.; Mayo M. L.; Carr M. R.; Crocker F. H.; Indest K. J. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor. J. Gen. Appl. Microbiol. 2019, 64, 139144.
(14) Archibald T. G.; Gilardi R.; Baum K.; George C. Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J. Org. Chem. 1990, 55, 29202924.
(15) Thompson C. A.; Rice J. K.; Russell T. P.; Seminario J. M.; Politzer P. Vibrational analysis of 1,3,3-trinitroazetidine using matrix isolation infrared spectroscopy and quantum chemical calculations. J. Phys. Chem. A 1997, 101, 77427748.
(16) Sikder N.; Sikder A. K.; Bulakh N. R.; Gandhe B. R. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J. Hazard. Mater. 2004, 113, 3543.
(17) Hammerl A.; Klapötke T. M.; Nöth H.; Warchhold M.; Holl G.; Kaiser M.; Ticmanis U. [N2H5]+2[N4C−NN−CN4]2-: A new high-nitrogen high-energetic material. Inorg. Chem. 2001, 40, 35703575.
(18) Chavez D. E.; Hiskey M. A. 1,2,4,5-tetrazine based energetic materials. J. Energetic Mater. 1999, 17, 357377.
(19) De Vries L.; Winstein S. Neighboring carbon and hydrogen. XXXIX.1 Complex rearrangements of bridged ions. Rearrangement leading to the bird-cage hydrocarbon1. J. Am. Chem. Soc. 1960, 82, 53635376.
(20) Liebman J. F.; Greenberg A. A survey of strained organic molecules. Chem. Rev. 1976, 76, 311365.
(21) Marchand A. P.; Wu A. Syntheses of new substituted pentacyclo[5.4.0.02,6.03,10.05,9]undecanes: a novel synthesis of hexacyclo[6.2.1.13,6.02,7.04,10.05,9]dodecane (1,3-bishomopentaprismane). J. Org. Chem. 1986, 51, 18971900.
(22) Nielsen A. T.; Nissan R. A.; Vanderah D. J.; Coon C. L.; Gilardi R. D.; George C. F.; Flippen-Anderson J. Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05.9.03,11] dodecanes from glyoxal and benzylamines. J. Org. Chem. 1990, 55, 14591466.
(23) Schulman J. M.; Disch R. L. Ab initio heats of formation of medium-sized hydrocarbons. The heat of formation of dodecahedrane. J. Am. Chem. Soc. 1984, 106, 12021204.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B.01.
(25) Hehre W. J.; Ditchfield R.; Pople J. A. SelfConsistent molecular orbital methods. XII. Further extensions of GaussianType basis sets for use in molecular orbital studies of organic olecules. J. Chem. Phys. 1972, 56, 22572261.
(26) Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785789.
(27) Schütz M.; Hetzer G.; Werner H.-J. Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J. Chem. Phys. 1999, 111, 56915705.
(28) Curtiss L. A.; Raghavachari K.; Redfern P. C.; Stefanov B. B. Assessment of complete basis set methods for calculation of enthalpies of formation. J. Chem. Phys. 1998, 108, 692697.
(29) Curtiss L. A.; Raghavachari K.; Redfern P. C.; Pople J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 1997, 106, 10631079.
(30) Shao J.; Cheng X.; Yang X. Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2005, 755, 127130.
(31) Politzer P.; Lane P. Comparison of density functional calculations of C–NO2, N–NO2 and C–NF2 dissociation energies. J. Mol. Struct. THEOCHEM 1996, 388, 5155.
(32) Harris N. J.; Lammertsma K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc. 1997, 119, 65836589.
(33) Kamlet M. J.; Jacobs S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 2335.
(34) Politzer P.; Ma Y.; Lane P.; Concha M. C. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int. J. Quantum Chem. 2005, 105, 341347.
(35) Owens F. J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. THEOCHEM 1996, 370, 1116.
(36) Guo L. Density functional study of structural and electronic properties of GaPn (2 ≤ n ≤ 12) clusters. J. Mater. Sci. 2010, 45, 33813387.
(37) Fan X.-W.; Ju X.-H. Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J. Comput. Chem. 2008, 29, 505513.
(38) Rice B. M.; Sahu S.; Owens F. J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. THEOCHEM 2002, 583, 6972.
(39) Zhang J.; Xiao H. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116, 1067410683.
(40) Mulliken R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 18331840.
(41) Keshavarz M. H.; Pouretedal H. R. Simple empirical method for prediction of impact sensitivity of selected class of explosives. J. Hazard. Mater. 2005, 124, 2733.
(42) Bulat F.; Toro-Labbé A.; Brinck T.; Murray J.; Politzer P. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 16791691.
(43) Gálvez-Ruiz J. C.; Holl G.; Karaghiosoff K.; Klapötke T. M.; Löhnwitz K.; Mayer P.; Nöth H.; Polborn K.; Rohbogner C. J.; Suter M.; Weigand J. J. Derivatives of 1,5-Diamino-1H-tetrazole: A new family of energetic heterocyclic-based salts. Inorg. Chem. 2005, 44, 42374253.
(44) Axenrod T.; Watnick C.; Yazdekhasti H.; Dave P. R. Synthesis of 1, 3, 3-trinitroazetidine. Tetrahedron Lett. 1993, 34, 6776680.
|