|
|
DFT Investigation on the Enantioselectivity of Olefin Carboacylation Catalyzed by a Rh(I) Complex |
CHENG Xue-Li;LI Li-Qing;HAN Yin-Feng;TAN Qing-Long;XIA Qi-Ying |
a (School of Chemistry and Chemical Engineering, Taishan University, Tai’an 271000, China)
b (School of Chemistry, Chemical Engineering and Materials,Zaozhuang University, Zaozhuang 277160, China)
c (School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China) |
|
|
Abstract The C–C bond activation and recyclization of benzocyclobutenone to poly-fused rings catalyzed by the [Rh(R,S-L)]+ complex producing the R,S-, S,R-, R,R- and S,S-product were investigated systematically at the BP86/6-31G(d,p) level in gas phase and THF, and the R,S- and S,R-reaction pathways were revisited at the M062X/6-31G(d,p) level in THF. The computational results reveal that THF only marginally alters the free-energy barriers, but elevates the relative energies of all species. The BP86 functional testifies that in both gas phase and THF, the activation of strained C–C bonds bears relatively low free-energy barriers, and the rate-determining steps of S,R- and R,R-channels are different from those of R,S- and S,S-channels. The BP86 functional also predicts that the R,S-channel is energetically most favorable in gas phase, but the S,R-product is dominant in THF. The change of NPA charges can mirror the variation of molecular structures to elucidate reaction mechanisms.
|
Received: 23 May 2019
Published: 13 April 2020
|
Fund:This work was jointly supported by the National Natural Science Foundation of China (No. 21571137), the Natural Science Foundation of Shandong Province (ZR2017LB010) and the Science and Technology Planning Project (Guidance Plan) of Tai’an City (Nos. 2018GX0041 and 2018GX0073)
|
Corresponding Authors:
x_cheng@tsu.edu.cn
E-mail: x_cheng@tsu.edu.cn
|
|
|
|
REFERENCES
(1) Jun, C. H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 2004, 33, 610−618.
(2) Chen, F.; Wang, T.; Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114, 8613−8661.
(3) Zhu, B.; Guan, W.; Yan, L. K.; Su, Z. M. Two-state reactivity mechanism of benzene C−C activation by trinuclear titanium hydride. J. Am. Chem. Soc. 2016, 138, 11069−11072.
(4) Hartwig, J. F. Evolution of C−H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2−24.
(5) Kim, D. S.; Park, W. J.; Jun, C. H. Metal-organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 2017, 117, 8977–9015.
(6) Wentzel, M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J. Chemoselectivity in catalytic C–C and C–H bond activation: controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. 2009, 48, 6121−6123.
(7) Obenhuber, A.; Ruhland, K. Activation of an unstrained C(sp2)–C(sp2) single bond using chelate-bisphosphinite rhodium(I) complexes. Organometallics 2011, 30, 4039−4051.
(8) Namyslo, J. C.; Kaufmann, D. E. The application of cyclobutane derivatives in organic synthesis. Chem. Rev. 2003, 103, 1485−1537.
(9) Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 2007, 107, 3117−3179.
(10) Shi, M.; Shao, L. X.; Lu, J. M.; Wei, Y.; Mizuno, K.; Maeda, H. Chemistry of vinylidenecyclopropanes. Chem. Rev. 2010, 110, 5883–5913.
(11) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 2011, 50, 7740–7752.
(12) Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272−286.
(13) Suggs, J. W.; Jun, C. H. Synthesis of a chiral rhodium alkyl via metal insertion into an unstrained C–C bond and use of the rate of racemization at carbon to obtain a rhodium-carbon bond dissociation energy. J. Am. Chem. Soc. 1986, 108, 4679–4681.
(14) Müller, C.; Iverson, C. N.; Lachicotte, R. J.; Jones, W. D. Carbon-carbon bond activation in Pt(0)-diphenylacetylene complexes bearing chelating P,N- and P,P-ligands. J. Am. Chem. Soc. 2001, 123, 9718–9719.
(15) Ruhland, K.; Obenhuber, A.; Hoffmann, S. D. Cleavage of unstrained C(sp2)–C(sp2) single bonds with Ni0 complexes using chelating assistance. Organometallics 2008, 27, 3482–3495.
(16) Sun, M.; Shen, G.; Bao, W. Regioselective cleavage of unstrained C–C bond and C–H bond: palladium-copper catalyzed deacetophenonylative arylation of coumarin derivatives. Adv. Synth. Catal. 2012, 354, 3468–3474.
(17) Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y. F.; Jiao, N. Copper-catalyzed aerobic oxidative C–C bond cleavage of unstrained ketones with air and amines. Org. Lett. 2015, 17, 2542–2545.
(18) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. Highly enantioselective Rh-catalyzed carboacylation of olefins: efficient syntheses of chiral poly-fused rings. J. Am. Chem. Soc. 2012, 134, 20005–20008.
(19) Xu, T.; Dong, G. Rhodium-catalyzed regioselective carboacylation of olefins: a C–C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 2012, 51, 7567–7571.
(20) Lyon, J. T.; Andrews, L. An infrared spectroscopic and theoretical study of group 4 transition metal CH2=MCl2 and HC÷MCl3 complexes. Organometallics 2007, 26, 332–339.
(21) Cheng, X. Density functional theory investigation on the reaction mechanisms of Ti (3F) with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3. Chin. J. Struct. Chem. 2016, 35, 193–198.
(22) Sberegaeva, A. V.; Zavalij, P. Y.; Vedernikov, A. N. Oxidation of a monomethylpalladium(II) complex with O2 in water: tuning reaction selectivity to form ethane, methanol, or methylhydroperoxide. J. Am. Chem. Soc. 2016, 138, 1446−1455.
(23) Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev. 1993, 93, 2091–2115.
(24) Zsoldos-Mády, V.; Ozohanics, O.; Csámpai, A.; Kudar, V.; Frigyes, D.; Sohár, P. Ferrocenyl pyrazolines: preparation, structure, redox properties and DFT study on regioselective ring-closure. J. Organomet. Chem. 2009, 694, 4185–4195.
(25) Yasui, E.; Ootsuki, R.; Takayama, K.; Nagumo, S. Unique ring expansion of a 6-3 bicyclic ring system forming a functionalized 7-membered ring accelerated by nitrogen functional groups. Tetra. Lett. 2017, 58, 3092–3095.
(26) Chen, X.; Xu, J. Synthesis of 3-acyl-5,6-dihydro-1,4-oxathiines through ring expansion of thiiranes. Tetra. Lett. 2017, 58, 1651–1654.
(27) Chen, Q.; Zhou, J.; Han, Q.; Wang, Y.; Fu, Y. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloid. Surface B 2012, 92, 130–135.
(28) Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.
(29) Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542.
(30) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. Computational study of Rh-catalyzed carboacylation of olefins: ligand-promoted rhodacycle isomerization enables regioselective C–C bond functionalization of benzocyclobutenones. J. Am. Chem. Soc. 2015, 137, 8274−8283.
(31) Cheng, X.; Li, F.; Zhao, Y.; Wang, Z.; Wang, C. A. Activation and recyclization of a benzocyclobutenone derivative catalyzed by a chiral Rh(I) complex based on DFT investigations. Chem. Pap. 2019, 73, 995–1001.
(32) Cheng, X.; Li, Y.; Zhao, Y.; Liu, Y. Reaction mechanism of Rh(I)-catalyzed olefin carboacylation: chiral enantioselectivity in the formation of poly-fused rings. Chem. J. Chin. U. 2018, 39, 521–529.
(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT 2010.
(34) Prince, B. M.; Cundari, T. R. Computational study of methane C−H activation by earth-abundant metal amide/aminyl complexes. Organometallics 2017, 36, 3987−3994.
(35) Krompiec, S.; Bujak, P.; Malarz, J.; Krompiec, M.; Skórka, Ł.; Pluta, T.; Danikiewicz, W.; Kania, M.; Kusz, J. An isomerization-1,3-dipolar cycloaddition tandem reaction towards the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines from O-allyl compounds. Tetrahedron 2012, 68, 6018−6031.
(36) Cheng, X.; Zhao, Y.; Liu, Y.; Li, F. Role of F- in the hydrolysis-condensation mechanisms of silicon alkoxide Si(OCH3)4: a DFT investigation. New J. Chem. 2013, 37, 1371–1377.
(37) Cheng, X. Cyclization mechanisms of the cyclic dimer of aziridine aldehyde with vinyl aldehyde. Comput. Theor. Chem. 2017, 1113, 105–109.
(38) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi.
J. Chem. Phys. 1985, 82, 284–298.
(39) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.
(40) Petrović, Z. D.; Petrović, V. P.; Simijonović, D.; Marković, S. Insight into hydrolytic reaction of N-acetylated L-histidylglycine dipeptide with novel mechlorethamine platinum(II) complex. NMR and DFT study of the hydrolytic reaction. Dalton Trans. 2011, 40, 9284–9288.
(41) Andrada, D. M.; Granados, A. M.; Solà, M.; Fernández, I. DFT study of thermal 1,3-dipolar cycloaddition reactions between alkynyl metal(0) Fischer carbene complexes and 3H-1,2-dithiole-3-thione derivatives. Organometallics 2011, 30, 466–476.
(42) Liu, R.; Zhang, J.; Han, L.; Liu, T. Mechanistic insight into the ruthenium-catalyzed cycloaddition of diynes with 2,3-diphenyl-2H-azirines: a theoretical study. Comput. Theor. Chem. 2018, 1127, 16–21.
(43) Wang, H.; Xie, Y.; King, R. B.; Schaefer III, H. F. Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. J. Am. Chem. Soc. 2005, 127, 11646−11651.
(44) Darmon, J. M.; Stieber, S. C. E.; Sylvester, K. T.; Fernández, I.; Lobkovsky, E.; Semproni, S. P.; Bill, E.; Wieghardt, K.; DeBeer, S.; Chirik, P. J. Oxidative addition of carbon-carbon bonds with a redox-active bis(imino)pyridine iron complex. J. Am. Chem. Soc. 2012, 134, 17125−17137.
(45) Ke, Z.; Abe, S.; Ueno, T.; Morokuma, K. Rh-catalyzed polymerization of phenylacetylene: theoretical studies of the reaction mechanism, regioselectivity, and stereoregularity. J. Am. Chem. Soc. 2011, 133, 7926−7941.
(46) Suarez-Bertoa, R.; Saliu, F.; Bruschi, M.; Rindone, B. Reaction products and mechanism of the regioselective oxidation of N-phenylmorpholine by ozone. Tetrahedron 2012, 68, 8267–8275.
(47) Raczyńska, E. D.; Michalec, P.; Zalewski, M.; Sapuła, M. Effects of ionization on stability of 1-methylcytosine — DFT and PCM studies. J. Mol. Model. 2016, 22, 146–14.
(48) Santos, C. I. A. V.; Ramos, M. L.; Justino, L. L. G.; Burrows, H. D.; Valente, A. J. M.; Esteso, M. A.; Leaist, D. G.; Ribeiro, A. C. F. Effect of pH in the structure and mass transport by diffusion of theophylline. J. Chem. Thermodyn. 2017, 110, 162−170.
(49) Gadžurić, S.; Tot, A.; Armaković, S.; Armaković, S.; Panić, J.; Jović, B.; Vraneš, M. Uncommon structure making/breaking behaviour of cholinium taurate in water. J. Chem. Thermodyn. 2017, 107, 58–64.
(50) Shi, Q.; Wang, Y.; Wei, D. Theoretical study on DABCO-catalyzed ring expansion of cyclopropyl ketone: mechanism, chemoselectivity, and role of catalyst. Comput. Theor. Chem. 2018, 1123, 20−25.
(51) Cheng, X. Structures, bonding and thermodynamics of extracting U(VI) from aqueous nitric acid solutions with N-methyl-N-decyl-octanamide and its amide derivatives: an M06-2X investigation. J. Chem. Thermodyn. 2019, 132, 470−475.
(52) Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.
(53) Schenker, S.; Schneider, C.; Tsogoeva, S. B.; Clark, T. Assessment of popular DFT and semiempirical molecular orbital techniques for calculating relative transition state energies and kinetic product distributions in enantioselective organocatalytic reactions. J. Chem. Theory Comput. 2011, 7, 3586−3595.
(54) Tot, A.; Armaković, S.; Armaković, S.; Gadžurić, S.; Vraneš, M. Kosmotropism of newly synthesized 1-butyl-3-methylimidazolium taurate ionic liquid: experimental and computational study. J. Chem. Thermodyn. 2016, 94, 85–95.
(55) Salehi, Y.; Hamzehloueian, M. The strain-promoted alkyne-nitrone and alkyne-nitrile oxide cycloaddition reactions: a theoretical study. Tetrahedron 2017, 73, 4634–4643.
(56) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161.
(57) Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
(58) Zheng, W.; Ariafard, A.; Lin, Z. Understanding the highly regioselective cyanothiolation of 1-alkynes catalyzed by palladium phosphine complexes. Organometallics 2008, 27, 246–253.
(59) Naka, A.; Takase, S.; Shimada, A.; Kobayashi, H.; Ishikawa, M. Platinum-catalyzed reactions of 2,3-bis(dimethylsilyl)furan with alkynes. J. Organomet. Chem. 2017, 853, 13–17.
(60) Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Theoretical insight into C(sp3)−F bond activations and origins of chemo- and regioselectivities of ″tunable″ nickel-mediated/-catalyzed couplings of 2-trifluoromethyl-1-alkenes with alkynes. Organometallics 2017, 36, 3739–3749.
(61) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.
(62) Simon, S.; Duran, M.; Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024−11031.
(63) Zhu, R.; Zhang, D.; Wu, J.; Liu, C. Theoretical study of the bifunctional-urea catalyzed Michael reaction of 1,3-dicarbonyl compounds and nitroolefins: reaction mechanism and enantioselectivity. Tetrahedron: Asymmetr. 2006, 17, 1611–1616.
(64) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735−746.
(65) Uggla, R.; Sundberg, M. R.; Nevalainen, V. Boronic acids as molecular sensors NBO analysis and 13C chemical shifts as tools for evaluation of DFT geometry optimization of complexes of diphenylmethane 3,3'-diboronic acids and glucose. Tetrahedron: Asymmetr. 1996, 7, 1741−1748.
(66) Uggla, R.; Nevalainen, V.; Sundberg, M. R. On the role of π-stacking in aldehyde complexes of N-sulphonylated oxazaborolidinones used as chiral catalysts. Tetrahedron: Asymmetr. 1996, 7, 2725−2732.
(67) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.
(68) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.
(69) Keerthi, A.; Geim, A. K.; Janardanan, A.; Rooney, A. P.; Esfandiar, A.; Hu, S.; Dar, S. A.; Grigorieva, I. V.; Haigh, S. J.; Wang, F. C.; Radha, B. Ballistic molecular transport through two-dimensional channels. Nature 2018, 558, 420–424.
(70) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33−38.
(71) Amesty, Á.; Burgueño-Tapia, E.; Joseph-Nathan, P.; Ravelo, Á. G.; Estévez-Braun, A. Benzodihydrofurans from cyperus teneriffae.
J. Nat. Prod. 2011, 74, 1061−1065.
(72) Cheng, X. L.; Li, G. X.; Wang, Z. M.; Zhao, Y. Y.; Sun, Y. F. Theoretical investigation of CH3CF2O2 + HOO reaction. Chin. J. Chem. Phys. 2007, 20, 243−248.
(73) Cheng, X. L.; Zhao, Y. Y.; Li, F.; Li, L. Q.; Tao, X. J. Reaction mechanism of the multi-channel decomposition reactions of 1-pentenyl free radicals. Chin. J. Chem. 2008, 26, 44−50.
|
|
|
|