|
|
EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage |
QIN Run-Zhi;WANG Yan;ZHAO Qing-He;YANG Kai;PAN Feng |
School of Advanced Materials, Peking University,Shenzhen Graduate School, Shenzhen 518055, China
|
|
|
Abstract Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to study the mass change and charge transfer during electrochemical process. The mass change on the electrode surface can be monitored with high precision and high sensitivity, making it possible to analyze the in-depth mechanism of electrode reactions. The application of metal anodes has exhibited great potential for the future energy storage devices for the elevated capacity. Herein, we review the research progress utilizing EQCM for metal anodes, including the deposition/dissolu- tion process, the side reactions, the effect of additives, etc. Furthermore, we also put forward a perspective on research of the mechanism and performance improvement of metal anodes.
|
Received: 23 March 2020
Published: 13 April 2020
|
Fund:This work was financially supported by Soft Science Research Project of Guangdong Province (No. 2017B030301013) |
Corresponding Authors:
panfeng@pkusz.edu.cn
E-mail: panfeng@pkusz.edu.cn
|
|
|
|
REFERENCES
(1) Sauerbrey, G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Physik. 1959, 155, 206–222.
(2) Kanazawa, K. K.; Gordon, J. G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105.
(3) Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.
(4) Wang, D. H.; Tang, X.; Qiu, Y. Y.; Gan, F. X.; Chen, G. Z. A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corros. Sci. 2005, 47, 2157–2172.
(5) Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring·mass losses. Chemelectrochem 2014, 1, 2075–2081.
(6) Zhao, Q.; Yang, J.; Liu, M.; Wang, R.; Zhang, G.; Wang, H.; Tang, H.; Liu, C.; Mei, Z.; Chen, H.; Pan, F. Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal. 2018, 8, 5621–5629.
(7) Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56.
(8) Yin, Z. W.; Peng, X. X.; Li, J. T.; Shen, C. H.; Deng, Y. P.; Wu, Z. G.; Zhang, T.; Zhang, Q. B.; Mo, Y. X.; Wang, K.; Huang, L.; Zheng, H.; Sun, S. G. Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. ACS Appl. Mater. Interfaces 2019, 11, 16214–16222.
(9) Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; Wang, Y.; Ding, S.; Song, Y.; Qian, G.; Chen, H.; Pan, F. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942.
(10) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.
(11) Mo, Y. B.; Gofer, Y.; Hwang, E. J.; Wang, Z. H.; Scherson, D. A. Simultaneous microgravimetric and optical reflectivity studies of lithium underpotential deposition on Au(111) from propylene carbonate electrolytes. J. Electroanal. Chem. 1996, 409, 87–93.
(12) Naoi, K.; Mori, M.; Shinagawa, Y. Study of deposition and dissolution processes of lithium in carbonate-based solutions by means of the quartz-crystal microbalance. J. Electrochem. Soc. 1996, 143, 2517–2522.
(13) Aurbach, D.; Moshkovich, M. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J. Electrochem. Soc. 1998, 145, 2629–2639.
(14) Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir. 1999, 15, 2947–2960.
(15) Smaran, K. S.; Shibata, S.; Omachi, A.; Ohama, A.; Tomizawa, E.; Kondo, T. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J. Phys. Chem. Lett. 2017, 8, 5203–5208.
(16) Zeng, W.; Cheng, M. M. C.; Ng, S. K. Y. Effects of transition metal cation additives on the passivation of lithium metal anode in Li-S batteries. Electrochim. Acta 2019, 319, 511–517.
(17) Park, S. H.; Winnick, J.; Kohl, P. A. Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone. J. Electrochem. Soc. 2002, 149, A1196–A1200.
(18) Tavassol, H.; Buthker, J. W.; Ferguson, G. A.; Curtiss, L. A.; Gewirth, A. A. Solvent oligomerization during SEI formation on model systems for Li-ion battery anodes. J. Electrochem. Soc. 2012, 159, A730–A738.
(19) Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J. Electrochem. Soc. 1999, 146, 462–469.
(20) Serizawa, N.; Seki, S.; Takei, K.; Miyashiro, H.; Yoshida, K.; Ueno, K.; Tachikawa, N.; Dokko, K.; Katayama, Y.; Watanabe, M.; Miura, T. EQCM measurement of deposition and dissolution of lithium in glyme-Li salt molten complex. J. Electrochem. Soc. 2013, 160, A1529–A1533.
(21) Matsumoto, H.; Tsuzuki, S.; Kubota, K. Lithium Redox in Imidazolium Ionic Liquids Composed of Five-membered Cyclic Amide in 17th International Meeting on Lithium Batteries. Fergus, J. W. Editor 2014, 223–230.
(22) Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.
(23) Zhao, Q.; Chen, X.; Wang, Z.; Yang, L.; Qin, R.; Yang, J.; Song, Y.; Ding, S.; Weng, M.; Huang, W.; Liu, J.; Zhao, W.; Qian, G.; Yang, K.; Cui, Y.; Chen, H.; Pan, F. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small. 2019, 15, 1904545.
(24) Agrisuelas, J.; Garcia-Jareno, J. J.; Gimenez-Romero, D.; Vicente, F. An electromechanical perspective on the metal/solution interfacial region during the metallic zinc electrodeposition. Electrochim. Acta 2009, 54, 6046–6052.
(25) Gimenez-Romero, D.; Garcia-Jareno, J. J.; Vicente, F. EQCM and EIS studies of Znaq2+ + 2e- ⇄ Zn0 electrochemical reaction in moderated acid medium. J. Electroanal. Chem. 2003, 558, 25–33.
(26) Hwang, B.; Oh, E. S.; Kim, K. Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries. Electrochim. Acta 2016, 216, 484–489.
(27) Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials 2020, 27, 205–211.
(28) Wittman, R. M.; Sacci, R. L.; Zawodzinski, T. A. Elucidating·mechanisms of oxide growth and surface passivation on zinc thin film electrodes in alkaline solutions using the electrochemical quartz crystal microbalance. J. Power Sources 2019, 438, 227034.
(29) Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051.
(30) Wang, Z.; Hu, J.; Han, L.; Wang, Z.; Wang, H.; Zhao, Q.; Liu, J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99.
(31) Miyazaki, K.; Nakata, A.; Lee, Y. S.; Fukutsuka, T.; Abe, T. Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. J. Appl. Electrochem. 2016, 46, 1067–1073.
(32) Ballesteros, J. C.; Diaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim. Acta 2007, 52, 3686–3696.
(33) Mitha, A.; Yazdi, A. Z.; Ahmed, M.; Chen, P. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem. 2018, 5, 2409–2418.
(34) Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. J. Appl. Electrochem. 2001, 31, 685–692.
(35) Moron, L. E.; Mendez, A.; Ballesteros, J. C.; Antano-Lopez, R.; Orozco, G.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Zn electrodeposition from an acidic chloride bath containing polyethyleneglycol (Mw 200) and benzylideneacetone as additives. J. Electrochem. Soc. 2011, 158, D435–D444.
(36) Song, K. D.; Kim, K. B.; Han, S. H.; Lee, H. Effect of additives on hydrogen evolution and absorption during Zn electrodeposition investigated by EQCM. Electrochem. Solid St. 2004, 7, C20–C24.
(37) Alesary, H. F.; Cihangir, S.; Ballantyne, A. D.; Harris, R. C.; Weston, D. P.; Abbott, A. P.; Ryder, K. S. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim. Acta 2019, 304, 118–130.
|
|
|
|