REFERENCES
(1) (a) Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Structures of metal-organic frameworks with rod secondary building units. Chem. Rev. 2016, 116, 12466–12535; (b) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714; (c) Lu, W.; Wei, Z.; Gu, Z.; Liu, T.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561−5593; (d) Zhang, X.; Yang, Q.; Zhao, J.; Hu, T.; Chang, Z.; Bu, X. Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: synthesis, structures, sorption and magnetic properties. Sci. China Chem. 2011, 54, 1446–1453.
(2) (a) Ye, C.; Zhu, C.; Gong, T.; Shen, E.; Xuan, W.; Cui, Y.; Liu, B. A novel Cu-based metallosalan complex: synthesis, structure and chiral sensor study. Chin. J. Struct. Chem. 2013, 32, 1076−1082.
(3) (a) Zhang, L.; Sun, L.; Li, X.; Tian, Y.; Yuan, G. Five 8-hydroxyquinolinate-based coordination polymers with tunable structures and photoluminescent properties for sensing nitroaromatics. Dalton Trans. 2015, 44, 401−410. (b) Wanderley, M.; Wang, C.; Wu, C.; Lin, W. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050−9053.
(4) Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic frameworks catalyzed C–C and C-heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922−1947.
(5) Xu, Z.; Meng, W.; Li, H. Guest molecule release triggers changes in the catalytic and magnetic properties of a Fe(II)-based 3D metal-organic framework. Inorg. Chem. 2014, 53, 3260–3262.
(6) Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144.
(7) Li, B.; Wen, H. M.; Cui, Y.; Zhou, W.; Qian, G. D.; Chen, B. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.
(8) Bosch, M.; Yuan, S.; Rutledge, W.; Zhou, H. C. Stepwise synthesis of metal-organic frameworks. Acc. Chem. Res. 2017, 50, 857−865.
(9) Wei, Z.; Yuan, D.; Zhao, X.; Sun, D.; Zhou, H. Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Sci. China Chem. 2013, 56, 418−422.
(10) (a) Wang, L. N.; Fu, L.; Zhu, J. W. Mn(II), Zn(II) and Cd(II) complexes based on oxadiazole backbone containing carboxyl ligand: synthesis, crystal structure, and photoluminescent study. Acta Chim. Slov. 2017, 64, 202–207. (b) Gai, Y. L.; Guo, Q.; Zhao, X. Y.; Chen, Y.; Liu, S.; Zhang, Y.; Zhuo, C. X.; Yao, C.; Xiong, K. C. Extremely stable europium-organic framework for luminescent sensing of Cr2O72− and Fe3+ in aqueous systems. Dalton Trans. 2018, 47, 12051–12055; (c) Ma, X.; Zhao, D.; Lin, L. F.; Qin, S. J.; Zheng, W. X.; Qi, Y. J.; Li, X. X.; Zheng, S. T. Construction of high-nuclearity manganese-cluster organic frameworks by using a tripodal alcohol ligand. Inorg. Chem. 2016, 55, 11311–11315; (d) Ni, A. Y.; Mu, Y.; Pan, J.; Han, S. D.; Shang, M. M.; Wang, G. M. An organic-inorganic hybrid zinc phosphite framework with room temperature phosphorescence. Chem. Commun. 2018, 54, 3712–3714.
(11) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112–122.
(12) Wan, X. Y.; Jiang, F. L.; Liu, C. P.; Zhou, K.; Chen, L.; Wu, M. Y.; Gai, Y. L.; Yang, Y.; Hong, M. C. Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperaturemodulated method. J. Mater. Chem. A 2015, 3, 22369–22376.
(13) Wan, X. Y.; Jiang, F. L.; Chen, L.; Pan, J.; Zhou, K.; Su, K. L.; Pang, J. D.; Lyu, G. X.; Hong, M. C. Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(II) coordination polymers assembled from a terphenyl-hexacarboxylate ligand. CrystEngComm. 2015, 17, 3829–3837.
(14) Cui, Y.; Li, B.; He, H. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.
(15) Gai, Y. L.; Jiang, F. L.; Chen, L.; Wu, M. Y.; Su, K. Z.; Pan, J.; Wan, X. Y.; Hong, M. C. Europium and terbium coordination polymers assembled from hexacarboxylate ligands: structures and luminescent properties. Cryst. Growth Des. 2014, 14, 1010–1017.
(16) Niu, C.; Zheng, X.; He, Y.; Feng Z.; Kou, C. Tuning of unusual secondary ligands to construct fluorescent zinc coordination polymers of an unsymmetrical pyridylbenzoate ligand from 1D chain to interdigital or porous 2D layers and interpenetrated 3D frameworks. CrystEngComm. 2010, 12, 2847−2855.
(17) Qiu, Y. C.; Li, Y. H.; Peng, G.; Cai, J. B.; Jin, L. M.; Ma, L.; Deng, H.; Zeller, M.; Batten, S. R. Cadmium metal-directed three-dimensional coordination polymers: in situ tetrazole ligand synthesis, structures, and luminescent properties. Cryst. Growth Des. 2010, 10, 1332–1340.
|