|
|
Synthesis, Structural Characterization and Magnetocaloric Effect of a Butterfly [CoII2GdIII2] Cluster |
LIU Tong;HUANG Yuan-Mei;ZOU Hua-Hong;WANG Hai-Ling;LIANG Fu-Pei |
a (State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, China)
b (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering,Guilin University of Technology, Guilin 541004, China)
|
|
|
Abstract 2-(2,3-Dihydroxpropyliminomethyl)6-methoxyphenol (H3L), trimethylacetic acid (Hpiv), Gd(NO3)3·6H2O and Co(NO3)2·6H2O were reacted in MeOH to obtain a heterometallic tetranuclear cluster [Gd2Co2(L)2(μ3-OH)2(piv)6]·2Hpiv·2CH3OH (1). X-ray crystallographic analysis reveals that compound 1 was found to be a butterfly heterometallic tetranuclear cluster. The crystal (C64H108Co2Gd2N2O28, Mr = 1785.88) belongs to the triclinic crystal system, space group P with a = 11.9798(6), b = 12.0877(5), c = 15.0367(7) Å, α = 67.320(4)°, β = 81.583(4)°, γ = 75.201(4)°, V = 1939.62(18) Å3, Z = 1, T = 293.15 K, R = 0.048 and wR = 0.144 for 16299 observed reflections with I > 2σ(I). In magnetization study, heterometallic 1 exhibits magnetocaloric effect (MCE) of 14.75 J·kg−1·K−1 at 2 K for ΔH = 5 T, while it does not show non-linear response of the ac-susceptibilities.
|
Received: 27 August 2018
Published: 12 July 2019
|
Fund: This work was supported by the National Natural Science Foundation of China (No. 21771043, 51572050 and 21601038),Guangxi Natural Science Foundation (No. 2015GXNSFDA139007 and 2016GXNSFAA380085), Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20162107) |
Corresponding Authors:
fliangoffice@yahoo.com and gxnuchem@foxmail.com
E-mail: fliangoffice@yahoo.com and gxnuchem@foxmail.com
|
|
|
|
REFERENCES
(1) Müller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Polyoxometalates: very large clusters-nanoscale magnets. Chem. Rev. 1998, 98, 239–272.
(2) Zheng, Z. P. Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem. Commun. 2001, 2521–2529.
(3) Gatteschi, D.; Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 2003, 42, 268–297.
(4) Romanelli, M.; Kumar, G. A.; Emge, T. J.; Riman, R. E.; Brennan, J. G. Intense near-IR emission from nanoscale lanthanoid fluoride clusters. Angew. Chem. Int. Ed. 2008, 47, 6049–6051.
(5) Papatriantafyllopoulou, C.; Moushi, E. E.; Christou, G.; Tasiopoulos, A. J. Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions. Chem. Soc. Rev. 2016, 45, 1597–1628.
(6) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. A tetranuclear 3d-4f single molecule magnet: [CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 2004, 126, 420–421.
(7) Papatriantafyllopoulou, C.; Stamatatos, T. C.; Efthymiou, C. G.; Cunha-Silva, L.; Paz, F. A. A.; Perlepes, S. P.; Christou, G. A high-nuclearity 3d/4f metal oxime cluster: an unusual Ni8Dy8 “Core-Shell” complex from the use of 2-Pyridinealdoxime. Inorg. Chem. 2010, 49, 9743–9745.
(8) Sessoli, R.; Powell, A. K. Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev. 2009, 253, 2328–2341.
(9) Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. J. Am. Chem. Soc. 2004, 126, 15648–15649.
(10) Zheng, X. Y.; Wang, S. Q.; Tang, W.; Zhuang, G. L.; Kong, X. J.; Ren, Y. P.; Long, L. S.; Zheng, L. S. Two nanosized 3d-4f clusters featuring four Ln6 octahedra encapsulating a Zn4 tetrahedron. Chem. Commun. 2015, 51, 10687–10690.
(11) Liu, J. L.; Chen, Y. C.; Guo, F. S.; Tong, M L. Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coord. Chem. Rev. 2014, 281, 26–49.
(12) Zheng, Y. Z.; Zhou, G. J.; Zheng Z.; Winpenny, R. E. P. Molecule-based magnetic coolers. Chem. Soc. Rev. 2014, 43, 1462–1475.
(13) Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: synthetic strategy, structures and properties of 3d-4f discrete complexes. Coord. Chem. Rev. 2015, 289–290, 74–122.
(14) Li, J.; Wei, R. M.; Pu, T. C.; Cao, F.; Yang, L.; Han, Y.; Zhang, Y. Q.; Zuo, J. L.; Song, Y. Tuning quantum tunneling of magnetization through 3d-4f magnetic interactions: an alternative approach for manipulating single-molecule magnetism. Inorg. Chem. Front. 2017, 4, 114–122.
(15) Zhang, S.; Hua, Y.; Chen, Z.; Zhang, S.; Hai, H. Manganese trinuclear clusters based on Schiff base: synthesis, characterization, magnetic and electrochemiluminescence properties. Inorg. Chim. Acta 2018, 471, 530–536.
(16) Peng, J. B.; Zhang, Q. C.; Kong, X. J.; Zheng, Y. Z.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S.; Zheng, Z. High-nuclearity 3d-4f clusters as enhanced magnetic coolers and molecular magnets. J. Am. Chem. Soc. 2012, 134, 3314–3317.
(17) Zheng, Y. Z.; Pineda, E. M.; Helliwell, M.; Winpenny, R. E. P. MnII-GdIII phosphonate cages with a large magnetocaloric effect. Chem.-Eur. J. 2012, 18, 4161–4165.
(18) Quan, H. B.; Sheng, L. B.; Zou, H. H.; Liu, Z. Y.; Liu, D.; Li, B.; Chen, M. S.; Liang, F. P. Synthesis, structure, and magnetic properties of a twist linear tetranuclear Co2IIILn2III complexes. J. Clust. Sci. 2018, 29, 75–81.
(19) Fu, X. X.; Wang, H. L.; Zou, H. H.; Quan, H. B.; Li, B.; Liang, F. P. Structures and magnetic properties of three heterobimetallic 3d-4f hexanuclear complexes. J. Clust. Sci. 2017, 28, 3229–3239.
(20) Zou, H. H.; Sheng, L. B.; Liang, F. P.; Chen, Z. L.; Zhang, Y. Q. Experimental and theoretical investigations of four 3d-4f butterfly single-molecule magnets. Dalton Trans. 2015, 44, 18544–18552.
(21) Wang, H. L.; Sheng, L. B.; Zou, H. H.; Wang, K.; Li, B.; Chen, M. S.; Liang, F. P. A family of NiII2LnIII2 butterfly complexes: lanthanide contraction effect on the structures magnetic properties. J. Clust. Sci. 2018, 29, 1313–1319.
(22) Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3−8.
(23) Chandrasekhar, V.; Pandian, B. M.; Azhakar, R.; Vittal, J. J.; Clérac, R. Linear trinuclear mixed-metal CoII-GdIII-CoII single-molecule magnet: [L2Co2Gd][NO3]·2CHCl3 (LH3 = (S)P[N(Me)N = CH-C6H3-2-OH-3-OMe]3). Inorg. Chem. 2007, 46, 5140–5142.
(24) Benelli, C.; Gatteschi, D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem. Rev. 2002, 102, 2369–2387.
(25) Xiong, L. N.; Liu, Q. Y.; Wang, Y. L. Crystal structure and magnetic properties of a two-dimensional compound. {(Me2NH2)4]Co(SIP)2]·2(DMF)·3(H2O)}n. Chinese J. Struct. Chem. 2016, 35, 1231–1237.
(26) Zhang, Y. J.; Yang, J. H.; Wang, J. J.; Chen, J. Synthesis, crystal structure and magnetic properties of a Cobalt(II) complex with quinoxaline-substituted nitronyl nitroxide radicals. Chinese J. Struct. Chem. 2016, 35, 959–964.
(27) Zheng, X. Y.; Peng, J. B.; Kong, X. J.; Long, L. S.; Zheng, L. S. Mixed-anion templated cage-like lanthanide clusters: Gd27 and Dy27. Inorg. Chem. Front. 2016, 3, 320–325.
|
|
|
|