|
|
Study on the Epigallocatechin Gallate and Konjac Glucomannan Mosaic Topological Structure |
HONG Xin;NI Yong-Sheng;LIN Wan-Mei;MU Ruo-Jun;WANG Lin;PANG Jie;WU Chun-Hua;WEN Cheng-Rong |
a (School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China)
b (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China) |
|
|
Abstract In order to effectively protect the activity of Epigallocatechin gallate (EGCG), we explored the protection mechanism of Konjac glucomannan (KGM) for EGCG by experiments and theory analyses. We synthesized KGM/EGCG nanofibers by using electrostatic spinning method. The microstructure of nanofibers was characterized by SEM, FTIR, TGA, XRD and Raman spectroscopic. The formation mechanism and the protection effects of KGM/EGCG nanofibers were also discussed. The results showed that the EGCG activity was protected due to the hydrogen bonds between -OH of EGCG and KGM, and EGCG was embedded in KGM nanofiber with bead style. The reducing force and DPPH scavenging ability data indicated that KGM/EGCG nanofibers have stronger antioxidant activity than the EGCG solution under the same condition. Hence, the mosaic topological structure of KGM can effectively extend the EGCG activity.
|
Received: 17 April 2017
Published: 13 September 2017
|
Fund:The work was supported by the National Natural Science Foundation of China (31471704, 31772045) |
Corresponding Authors:
pang3721941@163.com
E-mail: pang3721941@163.com
|
|
|
|
REFERENCES
(1)Alshatwi, A. A.; Periasamy, V. S.; Athinarayanan, J.; Elango, R. Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: caspase-dependent and independent apoptotic pathways. Chem-Biol. Interact. 2016, 247, 1–10.
(2) He, L.; Zou, L.; Yang, Q.; Xia, J.; Zhou, K.; Zhu, Y.; Han, X.; Pu, B.; Hu, B.; Deng, W.; Liu, S. Antimicrobial activities of nisin, tea polyphenols, and
chitosan and their combinations in chilled mutton. J. Food Sci. 2016, 81, 1466–1471.
(3) Asimina, K.; Gary, W. At the interface of antioxidant signalling and cellular function: key polyphenol effects.
Mol. Nutr. Food Res. 2016, 60, 1770–1788.
(4) Zhu, L. H. Effects of reduced frequency on network configuration and synchronization transition. Chin. Phys. Lett. 2016, 33, 14–17.
(5) Wang, C.; Xu, M.; Lv, W. P.; Qiu, P.; Gong, Y. Y.; Li, D. S. Study on rheological behavior of konjac glucomannan. Phys. Proc. 2012, 33, 25–30.
(6) Tomczynska-Mleko, M.; Brenner, T.; Nishinari, K.; Mleko, S.; Szwajgier, D.; Czernecki, T.; Wesolowska-Trojanowska, M. Rheological properties of mixed gels: gelatin, konjac glucomannan and locust bean gum. Food Sci. Technol. Res. 2014, 20, 607–611.
(7) Cao, Y. G.; Xiong, Y. L. Chlorogenic acid-mediated gel for-mation of oxidatively stressed myofibrillar protein. Food Chem. 2015, 180, 235–243.
(8) Rajan, V. K.; Muraleedharan, K. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem. 2017, 220, 93–99.
(9) Niu, R. W.; Pang, J. Self-organized optimization of transport on complex networks. Chin. Phys. Lett. 2016, 33, 153–156.
(10) Gibney, E.; Castelvecchi, D. Physics of 2D exotic matter wins Nobel. Nature 2016, 538, 18–18.
(11) Cho, A. Trio wins Nobel for effects of topology on exotic matter. Science 2016, 354, 21–21.
(12) Ni, Y. S.; Mu, R. J.; Tan, X. D.; Huang, R. X.; Yuan, Y.; Chen, H. B.; Pang, J. Stability of the konjac glucomannan topological chain based on quantum spin model. Chin. J. Struct. Chem. 2017, 36, 1043-1048.
(13) Mu, R. J.; Pang, J.; Yuan, Y.; Tan, X. D.; Wang, M.; Chen, H.; Chiang, W. Y. Progress on the structures and functions of aerogels. Chin. J. Struct. Chem. 2016, 35, 487–497.
(14) Lafarge, C.; Cayot, N.; Hory, C.; Goncalves, L.; Chassemont, C.; Le, B. P. Effect of konjac glucomannan addition on aroma release in gels containing potato starch. Food Res. Int. 2014, 64, 412–419.
(15) Rieger, K. A.; Birch, N. P.; Schiffman, J. D. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation. Carbohyd. Polym. 2016, 139, 131–138.
(16) Zhou, S.; Chen, J.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H.; Zhai, T. Scalable production of self-suEGCGorted ws 2 /cnfs by electrospinning as the anode for high-performance lithium-ion batteries. Sci. Bulletin. 2016, 61, 227–235.
(17) Shi, J.; Wu, T.; Teng, K.; Wang, W.; Shan, M.; Xu, Z.; Lv, H.; Deng, H. Simultaneous electrospinning and spraying toward branch-like nanofibrous membranes functionalised with carboxylated mwcnts for dye removal. Mater. Lett. 2016, 166, 26–29.
(18) Zhen, M. A.; Pang, J.; Lin, M. L.; Xie, B. Q.; Chen, H.; Chen, J. L. Despite impasse, domenici remains optimistic about energy bill. Chin. J. Struct. Chem. 2015, 34, 1187–1196.
(19) Negm, N. A.; Mohamed, A. S.; Ahmed, S. M.; Mohamed A. E. Polymer-cationic surfactant interaction: 1. surface and physicochemical properties of polyvinyl alcohol (PVA)-S-alkyl isothiouronium bromide surfactant mixed systems. J. Surf. Detegr. 2015, 18, 245–250.
(20) Pang, J.; Ma, Z.; Shen, B. S.; Xu, Q. J.; Sun, Z. Q.; Fu, L. Q.; Fang, W. Y.; Wen, C. R. Hydrogen bond networks’ QSAR and topological analysis of konjac glucomannan chains. Chin. J. Struct. Chem. 2014, 33, 480–489.
(21) Lu, M. L.; Li, Z. J.; Liang, H.; Shi, M. X.; Zhao, L. H.; Li, W.; Chen, Y. Y.; Wu, J. D.; Wang, S. S.; Chen, X. D.; Yuan, Q. P.; Li, Y. Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides. Food Hydro. 2015, 56, 476–485.
(22) Deng, H.; Wang, X.; Liu, P.; Ding, B.; Du, Y.; Li, G.; Xian, H.; Jian, Y. Enhanced bacterial inhibition activity of layer-by-layer structured polysaccharide film-coated cellulose nanofibrous mats via addition of layered silicate. Carbohyd. Polym. 2011, 83, 239–245.
(23) Brenner, T.; Wang, Z.; Achayuthakan, P.; Nakajima, T.; Nishinari, K. Rheology and synergy of carrageenan/locust bean gum/konjac glucomannangels. Carbohyd. Polym. 2013, 98, 754–760. |
|
|
|