REFERENCES
(1)de Groot, R. A.; Mueller, F. M.; van Engen, P. G.; Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 1983, 50, 2024–2027.
(2) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2015, 102, 10451–10453.
(3) Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.
(4) Zheng, F.; Zhou, G.; Liu, Z.; Wu, J.; Duan, W.; Gu, B. L.; Zhang, S. B. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys. Rev. B 2008, 78, 205415–1205415-5.
(5) Zhou, Y.; Li, S.; Zhou, W.; Zu, X.; Gao, F. Evidencing the existence of intrinsic half-metallicity and ferromagnetism in zigzag gallium sulfide nanoribbons. Sci. Rep. 2014, 4, 5773–1–5773–7.
(6) Zhou, Y.; Lu, H.; Zu, X.; Gao, F. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets. Sci. Rep. 2016, 6, 19407–1–19407–9.
(7) Du, A.; Sanvito, S.; Smith, S. C. First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys. Rev. Lett. 2012, 108, 197207–1–197207–5.
(8) Zhang, X.; Zhang, J.; Zhao, J.; Pan, B.; Kong, M.; Chen, J.; Xie, Y. Half-metallic ferromagnetism in synthetic Co9Se8 nanosheets with atomic thickness. J. Am. Chem. Soc. 2012, 134, 11908–11911.
(9) Torun, E.; Sahin, H.; Singh, S. K.; Peeters, F. M. Stable half-metallic monolayers of FeCl2. Appl. Phys. Lett. 2015, 106, 192404–1–192404–4.
(10) Si, C.; Zhou, J.; Sun, Z. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Inter. 2015, 7, 17510–17515.
(11) Wu, F.; Huang, C.; Wu, H.; Lee, C.; Deng, K.; Kan, E.; Jena, P. Atomically thin transition-metal dinitrides: high-temperature ferromagnetism and half-metallicity. Nano. Lett. 2015, 15, 8277–8281.
(12) He, J.; Ma, S.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518–2526.
(13) Wang, G. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C 2016, 120, 18850–18857.
(14) Zhao, T.; Zhou, J.; Wang, Q.; Kawazoe, Y.; Jena, P. Ferromagnetic and half-metallic FeC2 monolayer containing C2 dimers. ACS Appl. Mater. Inter. 2016, 7, 17510–26212.
(15) Hong, L.; Klie, R. F.; Öğüt, S. First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys. Rev. B 2016, 93, 115412–1–115412–12.
(16) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.
(17) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
(18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
(19) Korotin, M. A.; Anisimov, V. I.; Khomskii, D. I.; Sawatzky, G. A. CrO2: a self-doped double exchange ferromagnet. Phys. Rev. Lett. 1998, 80, 4305–4308.
(20) OpenMX website. http://www.openmx-square.org/.
(21) Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.
(22) Morrison, I.; Bylander, D. M.; Kleinman, L. Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 1993, 47, 6728–6731.
(23) Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 2003, 67, 155108–1–155108–5.
(24) Ozaki, T.; Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113–1–195113–19. |