|
|
Hydrothermal Synthesis, Crystal Structure and Proton Conductivity of a Pr–Ca Heterometal-organic Framework Generated by 1,2,4,5-Benzenetetracarboxylic Acid |
LIANG Xiao-Qiang;LI Ren-Zhong;FAN Zeng-Lu |
a (College of Environmental and Chemical Engineering,Xi’an Polytechnic University, Xi’an 710048, China)
b (College of Textile & Material, Xi'an Polytechnic University, Xi'an 710048, China)
c (College of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China)
d (State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China) |
|
|
Abstract A heterometal-organic framework {[Pr2Ca(betc)2(H2O)7]H2O}n (1) was prepared by the hydrothermal reaction of 1,2,4,5-benzenetetracarboxylic acid (H4betc) with Pr(NO3)3 and CaCO3, and further characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Complex 1 crystallizes in triclinic, space group P1 with a = 7.3668(12), b = 10.1726(14), c = 11.2264(15) Å, = 100.404(2), = 106.113(3), = 109.158(3)º, V = 728.48(19) Å3, Mr = 966.26, Z = 1, F(000) = 470, Dc = 2.203 g/cm3, (MoKα) = 3.585 mm-1, the final R = 0.0195 and wR = 0.0470 (I > 2(I)). Complex 1 is a 3D network with pcu topology with 1D porosity and rich hydrogen-bonding interactions. The proton conductivity of complex 1 was also studied under ~97% relative humidity and the different temperature conditions.
|
Received: 19 September 2016
Published: 12 June 2017
|
Fund:This work was supported by the National Natural Science Foundation of China (21401147 and 21301134), Basic Research Program of Natural Science from Shaanxi Provincial Government (2015JQ2032), Scientific Research Program from Education Department of Shaanxi Provincial Government (2013JK0654), Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University (201219),and the Program for Distinguished Young Scholars of Xi’an Polytechnic University (201403) |
Corresponding Authors:
xqliang1980@qq.com;
E-mail: xqliang1980@qq.com
|
|
|
|
REFERENCES
(1)O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
(2) Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.
(3) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
(4) Wang, C.; Zhang, T.; Lin, W. B. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem. Rev. 2012, 112, 1084–1104.
(5) Xiong, R. G.; Zhang, W. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195.
(6) Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379.
(7) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.
(8) Sumida, K.; Rogow, D. L. Mason, J. A.; McDonald, T. M.; Bloch, D. E.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.
(9) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.
(10) Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.
(11) Ren, Y. A.; An, M.; Gao, L. J.; Chai, H. M.; Hou, X. Y.; Zhou, G. J. Structural diversity and photoluminescent properties of two Mn(II) sulfoterephthalate complexes from multi-pyridine N-containing ligands. Chin. J. Struct. Chem. 2016, 35, 550–558.
(12) Ju, F. Y.; Li, Y. P.; Li, G. L.; Liu, G. Z. Syntheses, crystal structures, and magnetic properties of cobalt(II) complexes with 1,1-cyclohexanediacetic acid. Chin. J. Struct. Chem. 2016, 35, 404–412.
(13) Zhang, L. L.; Du, S. F.; Yu, X. Y.; Sun, D. F. Solvent dependent assembly, structural diversity and topology analysis in two novel Ni coordination polymers. Chin. J. Struct. Chem. 2016, 35, 428–436.
(14) Lei, Q.; Liu, Q. Y.; Wang, Y. L.; Chen, L. L.; Yin, S. G. Two three-dimensional terbium-1,4-benzenedicarboxylate coordination polymers: syntheses, structures, and luminescence. Chin. J. Struct. Chem. 2016, 35, 566–576.
(15) Bazaga-García, M.; Papadaki, M.; Colodrero, R. M. P.; Olivera-Pastor, P.; Losilla, E. R.; Nieto-Ortega, B.; Aranda, M. Á. G.; Choquesillo-Lazarte, D.; Cabeza, A.; Demadis, K. D. Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem. Mater. 2015, 27, 424–435.
(16) Lin, Q.; Wu, T.; Zheng, S. T.; Bu, X.; Feng, P. A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chem. Commun. 2011, 47, 11852–11854.
(17) Han, L.; Qin, L.; Xu, L.; Sun, J.; Zou, X. A novel photochromic calcium-based metal-organic framework derived from a naphthalene diimide chromophore. Chem. Commun. 2013, 49, 406–408.
(18) Reinsch, H.; Marszalek, B.; Wack, J.; Senker, J.; Gil, B.; Stock, N. A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chem. Commun. 2012, 48, 9486–9488.
(19) Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaȉm, E.; Vimont, A. XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Dalton Trans. 2009, 2241–2249.
(20) Qian, J.; Jiang, F.; Yuan, D.; Wu, M.; Zhang, S.; Zhang, L.; Hong, M. Highly selective carbon dioxide adsorption in a water-stable indium-organic framework material. Chem. Commun. 2012, 48, 9696–9698.
(21) Zheng, T.; Gao, Y.; Chen, L.; Diwu, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Structural and spectroscopic characterization of two new layered uranyl(VI) p-xylenediphosphonate compounds synthesized via ionothermal method. Inorg. Chim. Acta 2015, 435, 131–136.
(22) Shi, W.; Liu, K.; Cheng, P. Transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties. Struct. Bond. 2015, 163, 231–263.
(23) Wang, Y.; Zhang, Z. J.; Shi, W.; Cheng, P.; Liao, D. Z.; Yan, S. P. 3D heterometal-organic frameworks based on oxydiacetic acid. CrystEngComm. 2010, 12, 1086–1089.
(24) Zhang, F.; Yan, P.; Zou, X.; Zhang, J.; Hou, G.; Li, G. Novel 3D alkali-lanthanide heterometal-organic frameworks with pyrazine-2,3,5,6- tetracarboxylic acid: synthesis, structure, and magnetism. Cryst. Growth Des. 2014, 14, 2014–2021.
(25) Zhao, X. Q.; Zuo, Y.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, and luminescence properties of a series of LnIII-BaII heterometal-organic frameworks. Cryst. Growth Des. 2009, 9, 3948–3957.
(26) Bao, S. S.; Otsubo, K.; Taylor, J. M.; Jiang, Z.; Zheng, L. M.; Kitagawa, H. Enhancing proton conduction in 2D Co–La coordination frameworks by solid-state phase transition. J. Am. Chem. Soc. 2014, 136, 9292–9295.
(27) Bao, S. S.; Li, N. Z.; Taylor, J. M.; Yang, S.; Kitagawa, H.; Zheng, L. M. Co–Ca phosphonate showing humidity-sensitive single crystal to single crystal structural transformation and tunable proton conduction properties. Chem. Mater. 2015, 27, 8116–8125.
(28) Sheldrick, G. M. SHELXS 97, Software Reference Manual. Bruker AXS Inc., Madison, Wisconsin, USA 1997.
(29) Sheldrick, G. M. SHELXL 2014, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 2014.
(30) Xu, N.; Shi, W.; Liao, D. Z.; Yan, S. P.; Cheng, P. Template synthesis of lanthanide (Pr, Nd, Gd) coordination polymers with 2-hydroxynicotinic acid exhibiting ferro-/antiferromagnetic interaction. Inorg. Chem. 2008, 47, 8748–8756.
(31) Yashima, M.; Sakai, A.; Kamiyama,T.; Hoshikawa, A. Crystal structure analysis of b-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277.
(32) Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr Comp. Comm. Newsletter 2006, 7, 4–38.
(33) Wang, Y. B.; Zhang W. J.; Jin, L. P.; Lu, S. Z. New lanthanide coordination polymers of 1,2,4,5-benzenetetracarboxylic acid and 4,4΄-bipyridine with 1D channels. J. Mol. Struct. 2005, 737, 165–172.
(34) Chen, P. K.; Che, Y. X.; Xue, L.; Zheng, J. M. Two 2-fold interpenetrated frameworks showing different topologies based on the isomerous benze- nedicarboxylate mixed with a flexible N,N΄-type ligand. Cryst. Growth Des. 2006, 6, 2517–2522.
(35) Li, X. H.; Yang, S. Z.; Xiao, H. P. Synthesis and crystal structure of two interpenetrated open frameworks with different structural motifs. Cryst. Growth Des. 2006, 6, 2392–2397.
(36) Boonmak, J.; Youngme, S.; Chaichit, N.; Van Albada, G. A.; Reedijk, J. Series of copper(II) coordination polymers containing aminopyrazine and different carboxylato bridges: syntheses, structures and magnetic properties. Cryst. Growth Des. 2009, 9, 3318–3326.
(37) Shigematsu, A.; Yamada, T.; Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 2011, 133, 2034– 2036.
(38) Begum, S.; Wang, Z.; Donnadio, A.; Costantino, F.; Casciola, M.; Valiullin, R.; Chmelik, C.; Bertmer, M.; Kärger, J.; Haase, J.; Krautscheid, H. Water-mediated proton conduction in a robust triazolyl phosphonate metal-organic framework with hydrophilic nanochannels. Chem. Eur. J. 2014, 20, 8862–8866.
(39) Parshamoni, S.; Jena, H. S.; Sanda, S.; Konar, S. Synthesis, characterization, water adsorption and proton conductivity of three Cd(II) based luminescent metal-organic frameworks. Inorg. Chem. Front. 2014, 1, 611–620.
(40) Zhai, Q. G.; Mao, C. Y.; Zhao, X.; Lin, Q. P.; Bu, F.; Chen, X. T.; Bu, X. H.; Feng, P. Y. Cooperative crystallization of heterometallic indium-chromium metal-organic polyhedra and their fast proton conductivity. Angew. Chem. Int. Ed. 2015, 54, 7886–7890.
(41) Cao, G. J.; Liu, J. D.; Zhuang, T. T.; Cai, X. H.; Zheng, S. T. A polyoxometalate-organic supramolecular nanotube with high chemical stability and proton-conducting properties. Chem. Commun. 2015, 51, 2048–2051. |
|
|
|