|
|
Adsorption Properties and Quantum Molecular Descriptors of the Folic Acid Drug Adsorbed onto Zigzag and Armchair Single Walled Carbon Nanotubes: DFT Simulations |
Shahla Hamedani;Zahra Felegari |
a (Department of Chemistry, Abhar Branch, Islamic Azad University, Abhar, Iran)
b (Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran) |
|
|
Abstract The adsorption behavior of folic acid onto (5,0) zigzag and (5,5) armchair carbon nanotube (SWCNT) has been investigated using B3LYP density functional at the 6-31G* level. The adsorption energies, molecular orbital analysis and structural changes at the adsorption site are indicative of covalent adsorption on the zigzag SWCNT surface, while the adsorption is physical on the armchair SWCNT surface. The density of states (DOS) Plot and the quantum molecular descriptors (QMD) are witness to the significant changes in the electronic properties of SWCNT systems after the attachment of adsorbed species to the tube surface. According to the calculated results, the single-walled carbon nanotubes are expected to be a potential efficient adsorbent for the adsorption of folic acid drug and also can be used as a suitable drug delivery vehicle within biological systems.
|
Received: 20 June 2016
Published: 13 March 2017
|
Corresponding Authors:
sh_hamedani2004@yahoo.com
E-mail: sh_hamedani2004@yahoo.com
|
|
|
|
REFERENCES
(1)Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano. Res. 2009, 2, 85120.
(2) Yang, W.; Thordarson, P.; Gooding, J. J.; Ringer, S. P.; Braet, F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 2007, 18, 412001–412012.
(3) Yang, X.; Zhang, Z.; Liu, Z.; Ma, Y.; Yang, R.; Chen, Y. Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters. J. Nanopart. Res. 2008, 10, 815822.
(4) Xia, W.; Low, P. S. Folate-targeted therapies for cancer. J. Med. Chem. 2010, 53, 68116824.
(5) Castillo, J. J.; Svendsen, W. E.; Rozlosnik, N.; Escobar, P.; Martínez, F.; León, J. C. Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 2013, 138, 10261031.
(6) Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P. J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009, 30, 60416047.
(7) Wald, D. S.; Wald, N. J.; Morris, J. K. Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. Bmj. 2006, 333, 11141117.
(8) Wang, X.; Qin, X.; Demirtas, H.; Li, J.; Mao, G.; Huo, Y.; Sun, N.; Liu, L.; Xu, X. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007, 369, 1876–1882.
(9) Hoegger, D. L.; Morier, P.; Vollet, C.; Heini, D.; Reymond, F.; Rossier, J. S. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal. Bioanal. Chem. 2007, 387, 267275.
(10) La Vecchia, C.; Negri, E.; Pelucchi, C.; Franceschi, S. Dietary folate and colorectal cancer. Int. J. Cancer. 2002, 102, 545547.
(11) Hamedani, S.; Aghaie, H. Molecular structure and theoretical thermodynamic study of folic acid based on the computational approach. Chin. J. Struct. Chem. 2015, 34, 13071316.
(12) Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 56485652.
(13) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785789.
(14) Schmidt, M. W.; Baldridge.; K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 13471363.
(15) O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839845.
(16) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity index. Chem. Rev. 2006, 106, 20652091.
(17) Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct. Chem. 2009, 20, 10791085.
(18) Roy, R. K.; Saha, S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 2010, 106, 118162.
(19) Parr, R. G.; Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 75127516.
(20) Johnson, M.; Rols, S.; Wass, P.; Muris, M.; Bienfait, M.; Zeppenfeld, P.; Dupont-Pavlovsky, N. Neutron diffraction and numerical modelling investigation of methane adsorption on bundles of carbon nanotubes. Chem. Phys. 2003, 293, 217230.
(21) Hamedani, S.; Moradi, S.; Aghaie, H. Adsorption of folic acid on the single-walled carbon nanotubes: AIM and NBO analysis via DFT. Chin. J. Struct. Chem. 2015, 34, 11611169.
(22) Hamedani, S.; Aghaie, H.; Moradi, M. A DFT study of interaction of folic acid drug on functionalized single-walled carbon nanotubes. J. Phys. Theor. Chem. 2014, 11, 2026.
(23) Felegari, Z.; Monajjemi, M. AIM and NBO analyses on the interaction between SWCNT and cyclophosphamide as an anticancer drug: a density functional theory study. J. Chem. Theory Comput. 2015, 14, 1550021.
(24) Alwarappan, S.; Kumar, A. Graphene-based Materials. Science and Technology 2013, CRC Press. |
|
|
|