lREFERENCES
(1) Wang, Y. J.; Lu, Y.; Chen, K. Y.; Cui, S. Z.; Chen, W. H.; Mi, L. W. Synergistic effect of Co3O4@C@MnO2 nanowire heterostructures for high-performance asymmetry supercapacitor with long cycle life. Electrochim. Acta 2018, 283, 1087–1094.
(2) Li, C.; Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. 3D hierarchical CoO@MnO2 core-shell nanohybrid for high-energy solid state asymmetric supercapacitors. J. Mater. Chem. A. 2017, 5, 397–408.
(3) Gong, Q. H.; Li, Y. J.; Huang, H.; Zhang, J.; Gao, T. T.; Zhou, G. W. Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors. Chem. Eng. J. 2018, 344, 290–298.
(4) Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.
(5) Pei, F.; Lin, L. L.; Ou, D. H.; Zheng, Z. M.; Mo, S. G.; Fang, X. L.; Zheng, N. F. Self-supporting sulfur cathodes enabled by two dimensional carbon yolk-shell nanosheets for high energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 482–10.
(6) Luo, D.; Deng, Y. P.; Wang, X. L.; Li, G. R.; Wu, J.; Fu, J.; Lei, W.; Liang, R. L.; Liu, Y. S.; Ding, Y. L.; Yu, A. P.; Chen, Z. W. Tuning shell numbers of transition metal oxide hollow microspheres towards durable and superior lithium storage. Acs Nano 2017, 11, 11521–11530.
(7) Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped grapheme heterostructure for promising lithium-ion batteries. Nano. Energy 2017, 41, 154–163.
(8) Fang, Y.; Lv, Y. Y.; Gong, F.; Elzatahry, A. A.; Zheng, G. F.; Zhao, D. Y. Synthesis of 2D-mesoporous-marbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 2016, 28, 9385–9390.
(9) Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.
(10) Tang, Y. F.; Li, Y. S.; Guo, W. F.; Wang, J.; Li, X. M.; Chen, S. J.; Mu, S. C.; Zhao, Y. F.; Gao, F. M. Highly ordered multi-layered hydrogenated TiO2-II phase nanowire arrays negative electrode for 2.4 V aqueous asymmetric supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 2018, 6, 623–632.
(11) Hu, C. C.; Huang, Y. H.; Chang, K. H. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J. Power Sources 2002, 108, 117–127.
(12) Kim, B. C.; Wallace, G. G.; Yoon, Y. I.; Ko, J. M.; Too, C. O. Capacitive properties of RuO2 and Ru-Comixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. Synth. Met. 2009, 159, 1389–1392.
(13) Kim, I. H.; Kim, J. H.; Lee, Y. H.; Kim, K. B. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. J. Electrochem. Soc. 2005, 152, A2170–A2178.
(14) Lv, Z. S.; Luo, Y. F.; Tang, Y. X.; Wei, J. Q.; Zhu, Z. Q.; Zhou, X. R.; Li, W. L.; Zeng, L.; Zhang, W.; Zhang, Y. Y.; Qi, D. P.; Pan, S. W.; Loh, X. J.; Chen, X. D. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531.
(15) Liu, P. B.; Zhu, Y. D.; Gao, X. G.; Huang, Y.; Wang, Y.; Qin, S. Y.; Zhang, Y. Q. Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem. Eng. J. 2018, 350, 79–88.
(16) Zhai, T.; Wang, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.
(17) Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967.
(18) Pang, H.; Zhang, Y. Z.; Cheng, T.; Lai, W. Y.; Huang, W. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nano. Scale 2015, 7, 16012–16019.
(19) Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. Acs Nano. 2012, 6, 1688–1694.
(20) Demirel, S.; Oz, E.; Altin, E.; Altin, S.; Bayri, A.; Kaya, P.; Turan, S.; Avci, S. Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries. Mater. Charact. 2015, 105, 104–112.
(21) Guo, S. H.; Yu, H. J.; Jian, Z. L.; Liu, P.; Zhu, Y. B.; Guo, X. W.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem. 2014, 7, 2115–2121.
(22) Fu, B.; Zhou, X.; Wang, Y. P. High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J. Power Sources 2016, 310, 102–108.
(23) Huang, J. J.; Luo, J. Composites of sodium manganese oxides with enhanced electrochemical performance for sodium-ion batteries: tailoring properties via controlling microstructure. Sci. China Technol. Sc. 2016, 59, 1042–1047.
(24) Smith, K. C.; Dmello, R. Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J. Electrochem. Soc. 2016, 163, A530–A539.
(25) Smith, K. C. Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 2017, 230, 333–341.
(26) Pasta, M.; Wessells, C. D.; Cui, Y.; Mantia, F. L. A desalination battery. Nano. Lett. 2012, 12, 839–843.
(27) Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2019, 118, 9233–9280.
(28) Karikalan, N.; Karuppiah, C.; Chen, S. M.; Velmurugan, M.; Gnanaprakasam, P. Three-dimensional fibrous network of Na0.21MnO2 for aqueous. Chem. Eur. J. 2017, 23, 2379–2386.
(29) Lin, S. C.; Lu, Y. T.; Chien, Y. A.; Wang, J. A.; Chen, P. Y.; Ma, C. C. M.; Hu, C. C. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities. J. Power Sources 2018, 393, 1–10.
(30) Kim, S.; Yoon, H.; Shin, D.; Lee, J.; Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interf. Sci. 2017, 506, 644–648.
(31) Wallas, J. M.; Young, M. J.; Sun, H. X.; George, S. M. Efficient capacitive deionization using thin film sodium manganese oxide. J. Electrochem. Soc. 2018, 165, A2330–A2339.
(32) Boruah, B. D.; Maji, A.; Misra, A. Synergistic effect in heterostructure of ZnCo2O4 and hydrogenated zinc oxide nanorods for high capacitive response. Nano Scale. 2017, 9, 9411–9420.
(33) Kuang, M.; Wen, Z. Q.; Guo, X. L.; Zhang, S. Z.; Zhang, Y. X. Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J. Power Sources 2014, 270, 426–433.
(34) Jagadale, A. D.; Guan, G. Q.; Li, X. M.; Du, X.; Ma, X. L.; Hao, X. G.; Abudula, A. Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J. Power Sources 2016, 306, 526–534.
(35) Jagadale, A. D.; Kumbhar, V. S.; Dhawale, D. S.; Lokhande, C. D. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim. Acta 2013, 98, 32–38.
|