|
|
Temperature-dependent Syntheses of Two Manganese(II) Coordination Compounds Based on an Ether-bridged Tetracarbolylic Acid |
LI Yu;WU Jiang;GU Jin-Zhong;QIU Wen-Da;FENG An-Sheng |
a (Guangdong Research Center for Special Building Materials and Its Green Preparation Technology/Foshan Research Center for Special Functional Building Materials and Its Green Preparation Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China)
b (Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province,School of Pharmacy, Qinghai University for Nationalities, Xining 810007, China)
c (College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China)
|
|
|
Abstract 0D dinuclear manganese(II) coordination compound and 1D chain manganese(II) coordination polymer, namely [Mn2(μ-L)(phen)4]·4H2O (1) and {[Mn2(μ5-L)(phen)2]·H2O}n (2), have been constructed hydrothermally using H4L (H4L = 2,3,3΄,4΄-diphenyl ether tetracarboxylic acid), phen (phen = 1,10-phenanthroline), and manganese chloride at 120 and 160 °C, respectively. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses (TGA), and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that two compounds crystallize in the triclinic or monoclinic system, space group P or P21/c. Compound 1 discloses a discrete dimeric structure, which is assembled into a 3D supramolecular framework through O–H∙∙∙O hydrogen bond. Compound 2 has a chain structure. Structural differences between compounds 1 and 2 are attributed to the different reaction temperature. Magnetic studies for compound 2 demonstrate an antiferromagnetic coupling between the adjacent Mn(II) centers.
|
Received: 03 June 2019
Published: 13 April 2020
|
Fund:This work was supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2015, 2018), the Natural Science Foundation of Guangdong Province (No. 2016A030313761), the Pearl River Scholar Foundation of Guangdong Industry Polytechnic (RC2015-001), the Opening Foundation of MOE Key Laboratory of MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University (2016), Innovation Team Project on University of Guangdong Province (2017GKCXTD001), Science and Technology Planning Project of Guangzhou (201904010381) and the Science and Technology Plan of Qinghai Province (2018-ZJ-919) |
Corresponding Authors:
gujzh@lzu.edu.cn
E-mail: gujzh@lzu.edu.cn
|
|
|
|
REFERENCES
(1) Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F. Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(VI). Dalton Trans. 2018, 47, 3725–3732.
(2) Zhu, J.; Usov, P. M.; Xu, W. Q.; Celis-Salazar, P. J.; Lin, S. Y.; Kessinger, M. C.; Landaverde-Alvarado, C.; Cai, M.; May, A. M.; Slebodnick, C.; Zhu, D. R.; Senanayake, S. D.; Morris, A. J. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation. J. Am. Chem. Soc. 2018, 140, 993–1003.
(3) Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.
(4) Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. A robust luminescent Tb(III)-MOF with Lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules. Inorg. Chem. 2016, 55, 3265–3271.
(5) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
(6) Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Arol, A. S.; Kirillova, M. V.; Kirillov, A, M. Metal-organic architectures assembled from multifunctional polycarboxylate: hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation. Inorg. Chem. 2019, 58, 2403–2412.
(7) Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A, M. Cobalt(II) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875–5885.
(8) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 2009, 131, 13625–13627.
(9) Minguez, E. G.; Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557.
(10) Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.
(11) Chen, W. M.; Meng, X. L.; Zhuang, G. L.; Wang, Z.; Kurmoo, M.; Zhao, Q. Q.; Wang, X. P.; Shan, B. R.; Tung, C. H.; Sun, D. A superior fluorescent sensor for Al3+ and UO22+ based on a Co(II) metal-organic framework with exposed pyrimidyl Lewis base sites. J. Mater. Chem. A 2017, 5, 13079–13085.
(12) Mao, N. N.; Hu, P.; Yu, F.; Chen, X.; Zhuang, G. L.; Zhang, T. L.; Li, B. A series of transition metal coordination polymers based on a rigid bi-functional carboxylate-triazolate tecton. CrystEngComm. 2017, 19, 4586–4594.
(13) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Gas adsorption sites in a large-pore metal-organic framework. Science 2005, 309, 1350–1354.
(14) Hou, L.; Lin, Y. Y.; Chen, X. M. Porous metal-organic framework based on mu-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties. Inorg. Chem. 2008, 47, 1346–1351.
(15) Su, J.; Yao, L. D.; Zhao, M.; Wang, H.; Zhang, Q.; Cheng, L. J.; Zhang, J.; Zhang, S. Y.; Wu, J. Y.; Tian, Y. P. Structural induction effect of a zwitterion pyridiniumolate for metal-organic frameworks. Inorg. Chem. 2015, 54, 6169–6175.
(16) Gu, J. Z.; Gao, Z. Q.; Tang, Y. pH and auxiliary ligand influence on the structural variations of 5(2΄-carboxylphenyl) nicotate coordination polymers. Cryst. Growth Des. 2012, 12, 3312–3323.
(17) Zou, X. Z.; Wu, J.; Gu, J. Z.; Zhao, N.; Feng, A. S.; Li, Y. Synthesis of two nickel coordination compounds based on a rigid linear tricarboxylic acid. Chin. J. Inorg. Chem. 2019, 35, 1705–1711.
(18) Gu, J. Z.; Cui, Y. H.; Liang, X. X.; Wu, J.; Lv, D. Y.; Kirillov, A. M. Structurally distinct metal-organicand H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination and template effect of 4,4΄-bipyridine. Cryst. Growth Des. 2016, 16, 4658–4670.
(19) Wang, H. L.; Zhang, D. P.; Sun, D. F.; Chen, Y. T.; Wang, K.; Ni, Z. H.; Tian, L. J.; Jiang, J. Z. Diverse Ni(II) MOFs constructed from asymmetric semi-rigid V-shaped multicarboxylate ligands: structures and magnetic properties. CrystEngComm. 2010, 12, 1096−1102.
(20) Li, L.; Li, C. X.; Ren, Y. L.; Song, M.; Ma, Y.; Huang, R. D. Novel luminescent metal-organic frameworks based on rigid carboxylate ligands for highly selective sensing of Fe3+ ions. CrystEngComm. 2016, 18, 7787−7795.
(21) Liang, Y. T.; Yang, G. P.; Liu, B.; Yan, Y. T.; Xi, Z. P.; Wang, Y. Y. Four super water-stable lanthanide-organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Trans. 2015, 44, 13325−13330.
(22) Gu, W. J.; Gu, J. Z. Syntheses, crystal structures and magnetic properties of 1D and 2D cobalt(II) coordination polymers constructed from semirigid tricarboxylic acid. Chin. J. Inorg. Chem. 2017, 33, 227–236.
(23) Shao, Y. L.; Cui, Y. H.; Gu, J. Z.; Wu, J.; Wang, Y. W.; Kirillov, A. M. Exploring biphenyl-2,4,4΄-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm. 2016, 18, 765–778.
(24) Gu, J. Z.; Liang, X. X.; Cui, Y. H.; Wu, J.; Kirillov, A. M. Exploring 4-(3-carboxyphenyl)picolinic acid as a semirigid building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm. 2017, 19, 117–128.
(25) Gu, J. Z.; Wen, M.; Liang, X. X.; Shi, Z. F.; Kirillova, M. V.; Kirillov, A. M. Multifunctional aromatic carboxylic acids as versatile building blocks for hydrothermal design of coordination polymers. Crystals 2018, 8, 83.
(26) Gu, J. Z.; Liang, X. X.; Cai, Y.; Wu, J.; Shi, Z. F.; Kirillov, A. M. Hydrothermal assembly, structures, topologies, luminescence, and magnetism of a novel series of coordination polymers driven by a trifunctional nicotinic acid building block. Dalton Trans. 2017, 46, 10908–10925.
(27) Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.
(28) Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.
(29) Van de Sluis, P.; Spek, A. L. Bypass-an effective merhve method for the refinement of crystal-structures containing disordered solvent regions. Acta Crystallogr., Sect. A 1990, 46, 194–201.
(30) Feng, Y. Q.; Ding, C. H.; Fan, H. T.; Zhong, Z. G.; Qiu, D. F.; Shi, H. Z. Employing a new 12-connected topological open-framework copper borovanadate as an effective heterogeneous catalyst for oxidation of benzylalkanes. Dalton Trans. 2015, 44, 18731–18736.
(31) Feng, Y. Q.; Li, M.; Fan, H. T.; Huang, Q. Z.; Qiu, D. F.; Shi, H, Z. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels. Dalton Trans. 2015, 44, 894–897.
|
|
|
|