(1) Leyens, C.; Peters, M. Titanium and Titanium Alloys. 2003, 1–523.
(2) Koczak, J.; Premkumar, K. Emerging technologies for the in-situ production of MMCs. JOM 1993, 45, 44–48.
(3) Jattce, K.; Ogden, K.; Maybuth, J. Alloys of titanium with carbon, oxygen and nitrogen. Transactions AIME 1950, 188, 1261–1266.
(4) Yan, M.; Xu, W.; Dargusch, S.; Tang, H.; Brandt, M.; Qian, M. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 2014, 57, 251–257.
(5) Yan, M.; Dargusch, S.; Ebel, T.; Qian, M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 2014, 68, 196–206.
(6) Sun, B.; Li, S.; Imai, H.; Minoto, T.; Umeda, J.; Kondoh, K. Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mat. Sci. Eng. A 2013, 563, 95–100.
(7) Xia, Y.; Zhao, J.; Tian, Q.; Guo, X. Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal. JOM 2019, 71, 1–12.
(8) Ogden, R.; Jaffee, I. The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys. TML Report 1955, 20, 1–101.
(9) Kahvec, I.; Welsch, E. Effect of oxygen on hardness and alpha/beta phase ratio of Ti-6Al-4V alloy. Scripta Metal. 1986, 20, 1287–1290.
(10) Sidambe, T.; Derguti, F.; Todd, I. Metal injection moulding of low interstitial titanium. Key Eng. Mat. 2012, 520, 145–152.
(11) Ebel, T.; Friederici, V.; Imgrund, P.; Hartwig, T. Metal injection molding of titanium. Titanium Powder Metall. 2015, 337–360.
(12) Barkia, B.; Doquet, V.; Couzinié, P.; Guillot, I. Room-temperature creep and stress relaxation in commercial purity titanium-influence of the oxygen and hydrogen contents on incubation phenomena and aging-induced rejuvenation of the creep potential. Mat. Sci. Eng. A 2015, 624, 79–89.
(13) Yu, Q.; Correia, M.; Laskar, J. Origin of dramatic oxygen solute strengthening effect in titanium. Int. J. Astrobiol. 2014, 14, 233–254.
(14) Rhodes, G.; Paton, E. The influence of α/β interface phase on tensile properties of Ti-6AI-4V. Metall. Trans. A 1979, 10A, 1753–1758.
(15) Sauer, C.; Tjering, L. Influence of α layers at β grain boundaries on mechanical properties of Ti-alloys. Mat. Sci. Eng. 2001, 319, 393–397.
(16) Welsch, G.; Bunk, W. Deformation modes of the -phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature. Metall. Trans. A 1982, 13A, 889–899.
(17) Kim, S.; Ra, Y.; Yeo, D.; Bang, H.; Yoo, Y.; Kim, W. Microstructure, elastic modulus and tensile properties of Ti-Nb-O alloy system. J. Mater. Sci. Technol 2008, 24, 33–36.
(18) Prima, F.; Vermaut, P.; Gloriant, T.; Debuigne, J. Experimental evidence of elastic interaction between nanoparticles embedded in a metastable β titanium alloy. J. Mater. Sci. Lett. 2002, 21, 1935–1937.
(19) Lim, Y.; Mcmahon, J.; Pope, P.; Williams, J. The effect of oxygen on the structure and mechanical behavior of aged Ti-8 wt pct Al. Metall. Trans. A 1976, 7A, 139–144.
(20) Bridier, F.; Villechaise, P.; Mendez, J. Analysis of the different slip systems activated by tension in a /β titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005, 53, 555–567.
(21) Wyatt, W.; Joost, J.; Zhu, D.; Ankem, S. Deformation mechanisms and kinetics of time-dependent twinning in an -titanium alloy. Int. J. Plasticity 2012, 39, 119–131.
(22) Meyers, A.; Hringer, V.; Lubarda, A. The onset of twinning in metals a constitutive description. Acta mater. 2001, 49, 4025–4039.
(23) Zaefferer, S. Investigation of the correlation between texture and microstructure on a submicrometer scale in the TEM. Adv. Eng. Mater. 2003, 5, 607–613.
(24) Chen, B.; She, J.; Ye, X.; Umeda, J. Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration. J. Mater. Res. 2017, 32, 3769–3776.
(25) Sun, B.; Li, S.; Imai, H.; Umeda, J.; Kondoh, K. Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mat. Sci. Eng. A 2013, 563, 95–100.
(26) Kariya, S.; Fukuo, M.; Umeda, J.; Kondoh, K. Quantitative analysis on light elements solution strengthening in pure titanium sintered materials by Labusch model using experimental data. Mater. Trans. 2019, 60, 263–268.
(27) Hall, E. O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753.
(28) Jones, P.; Hutchinson, B. Stress-state dependence of slip in titanium-6Al-4V and other HCP metals. Acta Mater. 1981, 29, 951–968.
(29) Kariya, S.; Umeda, J.; Ma, Q.; Seiichi, K. Ductility improvement mechanism of pure titanium with excessive oxygen solid solution via rapid cooling process. J. Jpn. I. Met. 2018, 82, 390–395.
(30) Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; Raabe, D.; Gu, L.; Zhang, Q.; Chen, H.; Wang, H.; Liu, J.; An, K.; Zeng, Q.; Nieh, T.; Lu, Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546-550.
(31) Mimoto, T.; Umeda, J.; Kondoh, K. Strengthening behaviour and mechanisms of extruded powder metallurgy pure Ti materials reinforced with ubiquitous light elements. Powder Metall. 2016, 59, 223–228.
(32) Shen, J.; Chen, B.; Umeda, J.; Kondoh, K. Microstructure and mechanical properties of CP-Ti fabricated via powder metallurgy with non-uniformly dispersed impurity solutes. Mat. Sci. Eng. A 2018, 716, 1–10.
|