|
|
薏苡仁抗性淀粉结构特性及其对两歧双歧杆菌增殖效果的影响 |
BAO Chen;ZENG Hong-Liang;ZHANG Yi;LU Xu;ZHANG Long-Tao;HUANG Can-Can;ZHENG Bao-Dong |
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China |
|
|
Abstract 薏苡仁抗性淀粉是由天然淀粉经糊化和返生工艺制备得到的。本试验对薏苡仁淀粉,高直链玉米淀粉和湿热法制备的薏苡仁抗性淀粉的结构特性进行了研究。场发射扫描电镜结果显示,与薏苡仁淀粉和高直链玉米淀粉相比,薏苡仁抗性淀粉表面粗糙,有大量不规则条纹和沟壑。傅里叶红外光谱结果表明,薏苡仁淀粉,高直链玉米淀粉和薏苡仁抗性淀粉的分子有序结构度分别为1.355、1.372和1.410,双螺旋结构程度分别为1.931、1.942和2.027,提示与薏苡仁淀粉和高直链玉米淀粉相比,薏苡仁抗性淀粉分子具有更好的有序度和稳定性。 核磁共振结果显示,薏苡仁淀粉和高直链玉米淀粉表现为A-型结晶结构,而薏苡仁抗性淀粉表现为B-型结晶结构,薏苡仁淀粉,高直链玉米淀粉和薏苡仁抗性淀粉的的相对结晶度分别为76.41%、85.36%和87.25%,无定形区含量分别为5.78%、4.72%和4.39%。此外,与薏苡仁淀粉,高直链玉米淀粉相比,薏苡仁抗性淀粉能更好的促进益生菌两歧双歧杆菌增殖,在薏苡仁抗性淀粉为碳源的培养基中两歧双歧杆菌在模拟胃肠道环境下,如低pH,胆汁酸盐,胃蛋白酶,胰蛋白酶中,具有更高的存活率。
|
Received: 27 June 2016
Published: 13 March 2017
|
Fund: Supported by the National Natural Science Fund of China (No. 31301441), the Cooperation in Production, Study and Research of
Science and Technology Major Projects of Fujian Province (2012N5004), the Natural Science Foundation of Fujian Province (2012J01081),
the Scienti?c and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province ([2012]03),
and the Scienti?c and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University (cxtd12009) |
Corresponding Authors:
zbdfst@163.com
E-mail: zbdfst@163.com
|
|
|
|
REFERENCES
(1)Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Alimentary Pharmacology & Therapeutics 2005, 22, 495512.
(2) Miki, K.; Urita, Y.; Ishikawa, F.; Iino, T.; Shibahara-Sone, H.; Akahoshi, R.; Mizusawa, S.; Nose, A.; Nozaki, D.; Hirano, K.; Nonaka, C.; Yokokura, T. Effect of bifidobacterium bifidum, fermented milk on helicobacter pylori, and serum pepsinogen levels in humans. Journal of Dairy Science 2007, 90, 26302640.
(3) Park, J. H.; Um, J. I.; Lee, B. J.; Goh, J. S.; Park, S. Y.; Kim, W. S.; Kim, P. H. Encapsulated bifidobacterium bifidum, potentiates intestinal igA production. Cellular Immunology 2002, 219, 2227.
(4) Meira, Q. G. S.; Magnani, M.; Júniorc, F. C. D. M.; Queirogac, R. D. C. R. D. E. Q.; Madruga, M. S.; Gullón, B.; Gomes, A. M. P.; Pintado, M. M. E.; Souzaa, E. L. D. Effects of added lactobacillus acidophilus, and bifidobacterium lactis, probiotics on the quality characteristics of goat ricotta and their survival under simulated gastrointestinal conditions. Food Research International 2015, 76, 828838.
(5) Tian, R. H.; Ding, Y.; Nohara, T.; Takai, K.; Takiguchi, Y.; Ohtuka, H.; Yamasaki, K. Study on fatty constituents in coicis semen. Natural Medicines 1997, 51, 177185.
(6) Green, S.; Bertrand, S. L.; Duron, M. J.; Maillard, R. Digestibilities of amino acids in maize, wheat and barley meals, determined with intact and caecectomised cockerels. British Poultry Science 1987, 28, 631641.
(7) Kinraide, T. B.; Etherton, B. Electrical evidence for different mechanisms of uptake for basic, neutral, and acidic amino acids in oat coleoptiles. Plant Physiology 1980, 65, 10851089.
(8) Hidaka, Y.; Kaneda, T.; Amino, N.; Miyai, K. Chinese medicine, coix seeds increase peripheral cytotoxic T and NK cells. Biotherapy 1992, 5, 201203.
(9) Yuan, X.; Jing, W.; Jin, Z. Preparation of resistant starch from starch–guar gum extrudates and their properties. Food Chemistry 2007, 101, 2025.
(10) Goñi, I.; García-Diz, L.; Mañas, E.; Saura-Calixto, F. Analysis of resistant starch: a method for foods and food products source. Food Chemistry 1996, 56, 445449.
(11) Crittenden, R.; Laitila, A.; Forssell, P.; Matto, J.; Saarela, M.; Mattila-Sandholm, T.; Myllarinen, P. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Applied & Environmental Microbiology 2001, 67, 34693475.
(12) Guo, Z. B.; Liu, W. T.; Zeng, S. X.; Zheng, B. D. Effect of ultra high pressure processing on the particle characteristics of lotus-seed starch. Chin. J. of Struct. Chem. 2013, 32, 525532.
(13) Li, S.; Ward, R.; Gao, Q. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (phaseolus radiatus) starch. Food Hydrocolloids 2011, 25, 17021709.
(14) Lu, X.; Zeng, S. X.; Zhang, Y.; Guo, Z. B.; Tian, Y. T.; Miao, S.; Zheng, B. D. Effects of water-soluble oligosaccharides extracted from lotus (nelumbo nucifera gaertn.) seeds on growth ability of bifidobacterium adolescentis. European Food Research & Technology 2015, 241, 19.
(15) Faisant, N.; Buléon, A.; Colonna, P.; Molis, C.; Lartigue, S.; Galmiche, J. P.; Champ, M. Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. British Journal of Nutrition 1995, 73, 111123.
(16) Sha, X. S.; Xiang, Z. J.; Li, B.; Li, J.; Zhou, B.; Jiao, Y. J.; Kun, S. R. Preparation and physical characteristics of resistant starch (type 4) in acetylated indica rice. Food Chemistry 2012, 134, 149154.
(17) Zeng, S. X.; Wu, X. T.; Lin, S.; Zeng, H. L.; Xu, L.; Zhang, Y.; Zheng, B. D. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chemistry 2015, 186, 213222.
(18) Kačuráková, M.; Wilson, R. H. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydrate Polymers 2001, 44, 291303.
(19) Flores-Morales, A.; Jiménez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers 2012, 87, 6168.
(20) Zhua, S.; Bailb, A. L.; Ramaswamya, H. S. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 2014, 439, 109112.
(21) Soest, J. J. G. V.; Tournois, H.; Wit, D. D.; Vliegenthart, J. F. G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research 1995, 279, 201214.
(22) Zhang, Y.; Zeng, H. L.; Wang, Y.; Zeng, S. X.; Zheng, B. D. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chemistry 2014,155, 311318.
(23) Guo, Z. B.; Chen, B. Y.; Zeng, S. X.; Zheng, B. D. Structural, pasting, and thermal properties of ultra-high pressure-treated lotus seed starch. Chin. J. Struct. Chem. 2014, 33, 647653.
(24) Zhang, Y.; Wang, Y.; Zheng, B. D.; Lu, X.; Zhuang, W. J. The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of bifidobacterium adolescentis. Food & Function 2013, 4, 16091616.
(25) Lu, X. Study on preparation and regulate mechanism of lotus oligosaccharides to probiotics and pathogen in intestinal tract. Fuzhou: Fujian Agriculture and Forestry University 2015.
(26) Feng, Z.; Chen, F.; Kong, F.; Gao, Q.; Aadil, R. M; Yu, S. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch. Food Chemistry 2015, 187, 348353.
(27) Ridlon, J. M.; Kang, D. J.; Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research 2006, 47, 241259.
(28) Wang, Y. Preparation and properties of resistant starch derived from Lotus seed, and its proliferation effects on Bifidobacterium adolescence. Fuzhou: Fujian Agriculture and Forestry University 2013.
(29) Wu, X. T. Properties and prebiotics effects in vitro of lotus seed resistant starch prepared by different methods. Fuzhou: Fujian Agriculture and Forestry University 2014. |
|
|
|