|
|
Density Functional Theory Studies on the Adsorptions of CO2 on Different CaO Surfaces |
ZHANG Ying;HU Jian-Ming;CAO Quan-Zhen;QIU Mei;LI Yi;HUANG Xin;ZHANG Yong-Fan |
a (College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350116, China)
b (Fuzhou Command Academy, The Chinese People’s Armed Police Force, Fuzhou 350002, China)
c (Fujian Provincial Key Laboratory of Photocatalysis-State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002, China)
|
|
|
Abstract Carbon dioxide adsorbed on different kinds of CaO surfaces has been investigated with the help of the first principle density functional theory plane wave calculations. Various possible configurations have been considered and the calculated results showed that CO2 was strongly adsorbed by C atom bonded with the CaO (001) and (110) surfaces with adsorption energies of 1.38 and 3.22 eV, respectively. The adsorption of CO2 molecule on defect surfaces is complicated compared with that on the pristine surfaces. The adsorption energy of CO2 absorbed on the CaO(110) surface is larger than that of CaO(001) surface when the type of defect surface is the same.
|
Received: 28 March 2013
Published: 27 September 2013
|
Fund:The project was supported by the National Natural Science Foundation of China (21203027, 21073035), Natural Science Foundationof Fujian Province for Distinguished Young Investigator Grant (2013J06004), and Funds of Fujian Province (2012J01032, 2012J01041)
|
Corresponding Authors:
章永凡: zhangyf@fzu.edu.cn
E-mail: zhangyf@fzu.edu.cn
|
About author:: 章永凡: zhangyf@fzu.edu.cn |
|
|
|
(1) Yong, Z.; Mata, V.; Rodrigues, A. E. Adsorption of carbon dioxide on basic alumina at high temperatures. J. Chem. Eng. Data 2000, 45, 1093–1095.
(2) Knöfel, C.; Martin, C.; Hornebecq, V.; Llewellyn, P. L. Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J. Phys. Chem. C 2009, 113, 21726–21734.
(3) Zhao, X. X.; Xu, X. L.; Sun, L. B.; Zhang, L. L.; Liu, X. Q. Adsorption behavior of carbon dioxide and methane on AlPO4–14: a neutral molecular sieve. Energy Fuels 2009, 23, 1534–1538.
(4) Meisen, A.; Shuai, X. S. Research and development issues in CO2 capture. Energy Conversion and Management 1997, 38, S37–S42.
(5) Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 2006, 20, 1514–1520.
(6) Branda, M. M.; Valentin, C. D.; Pacchioni, G. NO and NO2 adsorption on terrace, step, and corner sites of the BaO surface from DFT calculations. J. Phys. Chem. B 2004, 108, 4752–4758.
(7) Schneider, W. F. Qualitative differences in the adsorption chemistry of acidic (CO2, SOx) and amphiphilic (NOx) species on the alkaline earth oxides. J. Phys. Chem. B 2004, 108, 273–282.
(8) Preda, G.; Pacchioni, G.; Chiesa, M.; Giamello, E. Formation of CO2− radical anions from CO2 adsorption on an electron-rich MgO surface: a combined ab initio and pulse EPR study. J. Phys. Chem. C 2008, 112, 19568–19576.
(9) Karlsen, E. J.; Nygren, M. A.; Pettersson, L. C. M. Comparative study on structures and energetics of NOx, SOx, and COx adsorption on alkaline-earth-metal oxides. J. Phys. Chem. B 2003, 107, 7795–7802.
(10) Besson, R.; Vargas, M. R.; Favergeon, L. CO2 adsorption on calcium oxide: an atomic-scale simulation study. Surface Science 2012, 606, 490–495.
(11) Pacchioni, G. Oxygen vacancy: the invisible agent on oxide surfaces. Chem. Phys. Chem. 2003, 4, 1041–1047.
(12) Wahlströn, E.; Lopez, N.; Schaub, R.; Thostrup, P.; Rønnau, A.; Africh, C.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys. Rev. Lett. 2003, 90, 026101–026104.
(13) Kresse, G.; Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169–11186.
(14) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
(15) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
(16) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
(17) Königstein, M.; Catlow, C. R. A. Ab initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides. Journal of Solid State Chemistry 1998, 140, 103–115.
(18) Holleman, A. F.; Wiberg, E. Lehrbuch der Anorganischen Chemie. Walter de Gruyter: Berlin, New York 1995.
(19) Galasso, F. S. Structure and Properties of Inorganic Solids. Pergamon Press: Oxford 1970.
(20) Broqvist, P.; Grönbeck, H.; Panas, I. Surface properties of alkaline earth metal oxides. Surf. Sci. 2004, 554, 262–271.
(21) Wells, A. F. Structural Inorganic Chemistry. 5th ed; Clarendon Press: Oxford 1984.
(22) Kadossov, E.; Burghaus, U. Adsorption kinetics and dynamics of CO, NO, and CO2 on reduced CaO(100). J. Phys. Chem. C 2008, 112, 7390–7400.
|
|
|
|