|
|
Synthesis,and Crystal Structure of a Zeolite-like Metal-organic Framework Based on the Triazole Ligand |
LI Dong-Ping;LIANG Xiao-Qiang;XU Yan;LI Cheng-Hui;YOU Xiao-Zeng |
a (Department of Chemistry, Nanchang University, Nanchang 330031, China)
b (State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China)
c (College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China)
|
|
|
Abstract A novel zeolite-like metal-organic framework, [Cd12(trz)12·F10·(SiF6)3]·(H3O)4 (Htrz = 1,2,4-triazole), has been synthesized under solvothermal conditions using 1H-1,2,4-triazole-3- carboxylic acid and CdF2 as the starting materials. The complex has been characterized by elemental analysis, IR, SEM-EDS, gas adsorption, powder and single-crystal X-ray diffraction analyses. The title complex crystallizes in the cubic I-43m space group, with α = 14.6436(8), V = 3140.1(3) Å3, Z = 2, Mr = 2857.96, Dc = 3.023 g/cm3 and F(000) = 2668. The final R = 0.0653 and wR = 0.1880 for 586 observed reflections with I > 2σ(I). In the title complex, three adjacent Cd(II) centers are connected by three μ3-bridging triazole ligands to form triagonal secondary building units (SBUs), which are further interconnected to form a three-dimensional skeleton with tetrahedral cages.
|
Received: 28 March 2013
Published: 23 September 2013
|
Fund:This work was supported by the National Natural Science Foundation of China (21101090), the Natural Science Foundation of Jiangxi Province (20114BAB213001) and the Education Department of Jiangxi Province (GJJ12041) |
Corresponding Authors:
李东平: nculdp@126.com
E-mail: nculdp@126.com
|
About author:: 李东平: nculdp@126.com |
|
|
|
(1) Zhou, X. P.; Liu, J.; Zhan, S. Z.; Yang, J. R.; Li, D.; Ng, K. M.; Sun, R. W. Y.; Che, C. M. A high-symmetry coordination cage from 38- or 62-component self-assembly. J. Am. Chem. Soc. 2012, 134, 8042−8045.
(2) Xuan, W. M.; Zhang, M. N.; Liu, Y.; Chen, Z. J.; Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 2012, 134, 6904−6907.
(3) Li, X. J.; Jiang, F. L.; Wu, M. Y.; Zhang, S. Q.; Zhou, Y. F.; Hong, M. C. Self-assembly of discrete M6L8 coordination cages based on a conformationally flexible tripodal phosphoric triamide ligand. Inorg. Chem. 2012, 51, 4116−4122.
(4) Zheng, S. T.; Bu, J. T.; Li, Y. F.; Wu, T.; Zuo, F.; Feng, P. Y.; Bu, X. H. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. J. Am. Chem. Soc. 2010, 132, 17062–17064.
(5) (a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 1995, 378, 469−471. (b) Caulder, D. L.; Brŭckner, C.; Powers, R. E.; König, S.; Parac, T. N.; Leary, J. A.; Raymond, K. N. Design, formation and properties of tetrahedral M4L4 and M4L6 supramolecular clusters. J. Am. Chem. Soc. 2001, 123, 8923−8938. (c) Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, K. Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage. J. Am. Chem. Soc. 2000, 122, 6311−6312.
(6) (a) Seidel, S. R.; Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 2002, 35, 972−983. (b) Liang, L. L.; Xue, H. B.; Shi, T. T.; Zhang, H. A new two-dimensional zinc coordination polymer constructed by 1,3-bis(4-pyridyl)-propane and terephthalate: synthesis and crystal structure. Chin. J. Struct. Chem. 2013, 3, 329−334. (c) Zhu, C. F.; Ban, F. J.; Sheng, E. H.; Zheng, S. J.; Liu, B. Z; Cui, Y. Synthesis, structure and photoluminescence of one zinc-based metal-metallosalen framework. Chin. J. Struct. Chem. 2013, 3, 205–210.
(7) (a) Ni, Z.; Yassar, A.; Antoun, T.; Yaghi, O. M. Porous metal-organic truncated octahedron constructed from paddle-wheel squares and terthiophene links. J. Am. Chem. Soc. 2005, 127, 12752−12753. (b) Alkordi, M. H.; Brant, J. A.; Wojtas, L.; Kravtsov, V. C.; Cairns, A. J.; Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). J. Am. Chem. Soc. 2009, 131, 17753−17755. (c) Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Ward, M. D. High-nuclearity homoleptic and heteroleptic coordination cages based on tetra-capped truncated tetrahedral and cuboctahedral metal frameworks. J. Am. Chem. Soc. 2006, 128, 72−73.
(8) (a) Ma, S. Q.; Sun, D. F.; Simmons, J. M.; Collier, C. D.; Yuan, D. Q.; Zhou, H. C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 2008, 130, 1012–1016; (b) Liu, T. F.; Lü, J.; Lin, X.; Cao, R. Construction of a trigonal bipyramidal cage-based metal-organic framework with hydrophilic pore surface via flexible tetrapodal ligands. Chem. Commun. 2010, 46, 8439–8441; (c) McManus, G. J.; Wang, Z.; Zaworotko, M. J. Suprasupermolecular chemistry: infinite networks from nanoscale metal-organic building blocks. Cryst. Growth Des. 2004, 4, 11–13; (d) Perry, IV. J. J.; Perman, J. A.; Zaworotko, M. J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 2009, 38, 1400–1417.
(9) (a) He, Q. T.; Li, X. P.; Liu, Y.; Yu, Z. Q.; Wang, W.; Su, C. Y. Copper(I) cuboctahedral coordination cages: host-guest dependent redox activity Angew. Chem., Int. Ed. 2009, 48, 6156–6519; (b) Mugridge, J. S.; Bergman, R. G.; Raymond, K. N. Does size really matter? The steric isotope effect in a supramolecular host-guest exchange reaction. Angew. Chem. Int. Ed. 2010, 49, 3635–3637.
(10) (a) SAINT. Program for data extraction and reduction. Bruker AXS, Madison Inc: WI 2001. (b) Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997. (c) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Gottingen, Germany 1997.
(11) (a) Burd, S. D.; Ma, S. Q.; Perman, J. A.; Sikora, B. J.; Snurr, R. Q.; Thallapally, P. K.; Tian, J.; Wojtas, L.; Zaworotko, M. J. Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-bipyridine, bpy-2 = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 2012, 134, 3663–3666; (b) Cordes, D. B.; Sharma, C. V. K.; Rogers, R. D. Enantiomorphic helical coordination polymers of {[M(pyrimidine)(OH2)4][SiF6]•H2O}∞ (M = Co2+, Cu2+, Zn2+). Cryst. Growth Des. 2007, 7, 1943–1945; (c) Wang, Y.; Zhao, X. Q.; Shi, W.; Cheng, P.; Liao, D. Z; Yan, S. P. Self-assembly of a series of metal-organic frameworks based on 4-pyridyl-1,2,4-triazole and copper(II) ion. Cryst. Growth Des. 2009, 9, 2137–2145.
(12) (a) Ouellette, W.; Prosvirin, A. V.; Valeich, J.; Dunbar, K. R.; Zubieta, J. Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the MII/triazolate/anion family, where MII = Mn, Fe, and Ni. Inorg. Chem. 2007, 46, 9067–9082. (b) Zhai, Q. G.; Wu, X. Y.; Chen, S. M.; Zhao, Z. G.; Lu, C. Z. Construction of Ag/1,2,4-triazole/polyoxometalates hybrid family varying from diverse supramolecular assemblies to 3-D rod-packing framework. Inorg. Chem. 2007, 46, 5046–5058. (c) Ding, B.; Yi, L.; Cheng, P.; Liao, D. Z.; Yan, S. P. Synthesis and characterization of a 3D coordination polymer based on trinuclear triangular CuII as secondary building units. Inorg. Chem. 2006, 45, 5799–5803. (d) Zhai, Q. G.; Lu, C. Z.; Chen, S. M.; Xu, X. J.; Yang, W. B. Design of novel three-dimensional coordination polymers based on triangular trinuclear copper 1,2,4-triazolate units. Cryst. Growth Des. 2006, 6, 1393–1398.
(13) (a) Springsteen, C. H.; Sweeder, R. D.; LaDuca, R. L. Ligand and anion effects on the morphology of aqueous substructures entrained within one-dimensional [CuL4X] coordination polymer matrices (L = 2,4΄-bipyridine, 4-phenylpyridine; X = SO42-, SiF62-). Cryst. Growth Des. 2006, 10, 2308–2314. (b) Rajput, L.; Biradha, K. Reliable formation of an unusual and chiral two-dimensional network containing entanglement of the ligand in the presence of different anions. Cryst. Growth Des. 2009, 9, 3848–3851.
|
|
|
|