(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
(2) Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Graphene synthesis, functionalization and applications in chemistry. Acta Phys. Chim. Sin. 2010, 26, 2073-2086.
(3) Zhou, J.; Wu, M. M.; Zhou, X.; Sun, Q. Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 2009, 95, 103108-103108(3).
(4) Tian, X.; Xu, J.; Wang, X.Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field. J. Phys. Chem. 2010, 114, 11377-11381.
(5) Balog, R. Band gap opening in graphene induced by patterned hydrogen adsorption. Nature Mat. 2010, 9, 315-319.
(6) Denis, P. A. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 2010, 492, 251-257.
(7) Akturk, E.; Ataca, C.; Ciraci, S. Effects of silicon and germanium adsorbed on graphene. Appl. Phys. Lett. 2010, 96, 123112-123112(3).
(8) Denis, P. A.; Faccio, R.; Mombru, A. W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur. ChemPhysChem. 2009, 10, 715-722.
(9) Dai, J.; Yuan, J.; Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 2009, 95, 232105-232105(3).
(10) Zanella, I.; Guerini, S.; Fagan, S. B.; Mendes Filho, J.; Souza Filhol, A. G. Chemical doping-induced gap opening and spin polarization in graphene. Phys. Rev. B 2008, 77, 073404-073404(4).
(11) Prashant, P. S; Vijay, K.Direct band gap opening in graphene by BN doping: ab initio calculations. Phys. Rev. B 2011, 84, 125401-125401(6).
(12) Deng, X. H.; Wu, Y. Q.; Dai, J. Y.; Kang, D. D.; Zhang, D. Y. Electronic structure tuning and band gap opening of graphene by hole/electron codoping. Phys. Let. A 2011, 375, 3890-3894.
(13) Mary, C. S. E.; Tien, Q. N.; Hideaki, K. Analysis of band gap formation in graphene by Si impurities: local bonding interaction rules. Chem. Phys. Let. 2011, 515, 85-90.
(14) Wang, H. T.; Wang, Q. X.; Cheng, Y. C. Doping monolayer graphene with single atom substitutions. Nano. Lett. 2012, 12, 141−144.
(15) Cruz-Silva, E.; Barnett, Z. M.; Sumpter, B. G.; Meunier1, V. Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Phys. Rev. B2011, 83, 155445−155445(9).
(16) Avetisyan, A. A.; Partoens, B.; Peeters, F. M. Electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 2009, 79, 035421−035421(7).
(17) Mak, K. F.; Lui, C. H.; Shan, J.; Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 2009, 102, 256405−256405(4).
(18) Shemella, P.; Nayak, S. K. Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Appl. Phys. Lett. 2009, 94, 032101−032101(3).
(19) Peng, X.; Ahuja, R. Symmetry breaking induced band gap in epitaxial graphene layers on SiC. Nano. Lett. 2008, 8, 4464−4468.
(20) Lu, Y. H.; He, P. M.; Feng, Y. P. Asymmetric spin gap opening of graphene on cubic boron nitride (111) substrate. J. Phys. Chem. C 2008, 112, 12683-12686.
(21) Nilsson, J.; Castro Neto, A. H.; Guinea, F.; Peres, N. M. R. Transmission through a biased graphene bilayer barrier. Phys. Rev. B 2007, 76, 165416−165416(10).
(22) Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803−216803(4).
(23) Xu, N.; Zhang, C.; Kong, F. J.; Shi, Y. J. Transport properties of corrugated graphene nanoribbons. Acta Phys. Chim. Sin. 2011, 27, 2107-2110.
(24) Rani, P. J. Designing band gap of graphene by B and N dopant atoms. VK 2012 arXiv:1209.5228 [cond-mat.mes-hall].
(25) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
(26) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244−13249.
(27) Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547−2547(7).
(28) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 786−789.
(29) Delley, B. DMol3 DFT studies: from molecules and molecular environments to surfaces and solids. Comput. Mater. Sci. 2000, 17, 122−126. |