(1) Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by
transition metals. Chem. Rev. 2000, 100, 853–908.
(2) Zheng, H.; Li, Y.; Liu, H.; Yin, X.; Li, Y. Construction of heterostructure materials toward functionality. Chem. Soc. Rev. 2011, 40, 4506–4524.
(3) Liu, H.; Xu, J.; Li, Y.; Li, Y. Aggregate nanostructures of organic molecular materials. Acc. Chem. Res. 2010, 43, 1496–1508.
(4) Cui, S.; Liu, H.; Gan, L.; Li, Y.; Zhu, D. Fabrication of low-dimension nanostructures based on organic conjugated molecules.
Adv. Mater. 2008, 20, 2918–2925.
(5) Suslick, K. S.; Bhyrappa, P.; Chou, J. H.; Kosal, M. E.; Nakagaki, S.; Smithenry, D. W.; Wilson, S. R. Microporous porphyrin solids. Acc. Chem. Res. 2005, 38, 283–291.
(6) Esswein, A. J.; Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047.
(7) Drain, C. M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materials. Chem. Rev. 2009, 109, 1630–1658.
(8) Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Molecular semiconductors in organic photovoltaic
cells. Chem. Rev. 2010, 110, 6689–6735.
(9) Umeyama, T.; Takamatsu, T.; Tezuka, N.; Matano, Y.; Araki, Y.; Wada, T.; Yoshikawa, O.; Sagawa, T.; Yoshikawa, S.; Imahori, H. Synthesis and photophysical and photovoltaic properties of porphyrin-furan and -thiophene alternating copolymers. J. Phys. Chem. C 2009, 113, 10798–10806.
(10) Fukuzumi, S.; Kojima, T. Photofunctional nanomaterials composed of multiporphyrins and carbon-based [small pi]-electron acceptors. J. Mater. Chem. 2008, 18, 1427–1439.
(11) Jiang, L.; Li, Y. The progress on design and synthesis of photoactive porphyrins-based dyads, triads and polymers.
J. Porphyrins Phthalocyanines 2007, 11, 299–312.
(12) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin tessellation by design: metal-mediated self-assembly of large arrays and tapes. Angew. Chem. Int. Ed. 1998, 37, 2344–2347.
(13) Kirmse, W. Persistent triplet carbenes. Angew. Chem. Int. Ed. 2003, 42, 2117–2119.
(14) Li, W. S.; Aida, T. Dendrimer porphyrins and phthalocyanines. Chem. Rev. 2009, 109, 6047–6076.
(15) Huang, C.; Li, Y.; Song, Y.; Li, Y.; Liu, H.; Zhu, D. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv. Mater. 2010, 22, 3532–3536.
(16) Li, Y.; Li, X.; Li, Y.; Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: from multibilayer vesicles to hollow capsules. Angew. Chem. Int. Ed. 2006, 45, 3639–3643.
(17) Huang, C.; Wen, L.; Liu, H.; Li, Y.; Liu, X.; Yuan, M.; Zhai, J.; Jiang, L.; Zhu, D. Controllable growth of 0D to multidimensional nanostructures of a novel porphyrin molecule. Adv. Mater. 2009, 21, 1721–1725.
(18) Lee, S. J.; Hupp, J. T.; Nguyen, S. T. Growth of narrowly dispersed porphyrin nanowires and their hierarchical assembly into macroscopic columns. J. Am. Chem. Soc. 2008, 130, 9632–9633.
(19) Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization of porphyrin nanosheets.
J. Am. Chem. Soc. 2007, 129, 2440–2441.
(20) Schenning, A. P. H. J.; Benneker, F. B. G.; Geurts, H. P. M.; Liu, X. Y.; Nolte, R. J. M. Porphyrin wheels. J. Am. Chem. Soc. 1996, 118, 8549-8552.
(21) Tamaru, S. I.; Nakamura, M.; Takeuchi, M.; Shinkai, S. Rational design of asugar-appended porphyrin gelator that is forced to assemble into a one-dimensional aggregate. Org. Lett. 2001, 3, 3631–3634.
(22) Hu, J. S.; Guo, J. Y.; Liang, H. P.; Wan, L. J.; Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 2005, 127, 17090–17095.
(23) Qiu, Y.; Chen, P.; Liu, M. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality. J. Am. Chem. Soc. 2010, 132, 9644–9652.
(24) Li, D.; Ratner, M. A.; Marks, T. J.; Zhang, C.; Yang, J.; Wong, G. K. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials. J. Am. Chem. Soc. 1990, 112, 7389–7390.
(25) Jiang, L.; Lu, F.; Li, H.; Chang, Q.; Li, Y.; Liu, H.; Wang, S.; Song, Y.; Cui, G.; Wang, N.; He, X.; Zhu, D. Third-order nonlinear optical properties of an ultrathin film containing a porphyrin derivative. J. Phys. Chem. B 2005, 109, 6311–6315.
(26) Huang, C.; Xing, C.; Wang, S.; Li, Y.; Liu, H.; Lai, S. W.; Che, C. M.; Li, Y. Fabrication of a well ordered microspheres film for efficient antibacterial activity. Chem. Commun. 2011, 47, 7644–7646.
(27) Liu, T.; Li, Y.; Yan, Y.; Li, Y.; Yu, Y.; Chen, N.; Chen, S.; Liu, C.; Zhao, Y.; Liu, H. Tuning growth of low-dimensional organic nanostructures for efficient optical waveguide applications. J. Phys. Chem. C 2012, 116, 14134–14138.
(28) Ipe, B. I.; Yoosaf, K.; Thomas, K. G. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.
J. Am. Chem. Soc. 2006, 128, 1907–1913.
(29) van Herrikhuyzen, J.; Janssen, R. A. J.; Meijer, E. W.; Meskers, S. C. J.; Schenning, A. P. H. J. Fractal-like self-assembly of oligo(p-phenylene vinylene) capped gold nanoparticles. J. Am. Chem. Soc. 2005, 128, 686–687.
(30) Kang, Y.; Erickson, K. J.; Taton, T. A. Plasmonic nanoparticle chains via a morphological, sphere-to-string transition.
J. Am. Chem. Soc. 2005, 127, 13800–13801.
(31) Liu, J.; Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing.
J. Am. Chem. Soc. 2005, 127, 12677–12683.
(32) Lee, J. S.; Stoeva, S. I.; Mirkin, C. A. DNA-induced size-selective separation of mixtures of gold nanoparticles.
J. Am. Chem. Soc. 2006, 128, 8899–8903.
(33) Wang, B.; Wasielewski, M. R. Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials. J. Am. Chem. Soc. 1997, 119, 12–21.
(34) Liu, X.; He, X.; Jiu, T.; Yuan, M.; Xu, J.; Lv, J.; Liu, H.; Li, Y. Controlled aggregation of functionalized gold nanoparticles with a novel conjugated oligomer. ChemPhysChem. 2007, 8, 906–912.
(35) He, X.; Liu, H.; Li, Y.; Liu, Y.; Lu, F.; Li, Y.; Zhu, D. A new copolymer containing perylene bisimide and porphyrin moieties: synthesis and characterization. Macromol. Chem. Phys. 2005, 206, 2199–2205.
(36) Maeda, K.; Takeyama, Y.; Sakajiri, K.; Yashima, E. Nonracemic dopant-mediated hierarchical amplification of macromolecular helicity in a charged polyacetylene leading to a cholesteric liquid crystal in water. J. Am. Chem. Soc. 2004, 126, 16284–16285.
(37) Lee, H. J.; Jin, Z. X.; Aleshin, A. N.; Lee, J. Y.; Goh, M. J.; Akagi, K.; Kim, Y. S.; Kim, D. W.; Park, Y. W. Dispersion and current-voltage characteristics of helical polyacetylene single fibers. J. Am. Chem. Soc. 2004, 126, 16722–16723.
(38) Liu, Y.; Wang, N.; Li, Y.; Liu, H.; Li, Y.; Xiao, J.; Xu, X.; Huang, C.; Cui, S.; Zhu, D. A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups. Macromolecules 2005, 38, 4880–4887.
(39) Myśliborski, R.; Latos-Grażyński, L. Carbaporphyrinoids containing a pyridine moiety: 3-aza-meta-benziporphyrin and 24-thia-3-aza-meta- benziporphyrin. Eur. J. Org. Chem. 2005, 2005, 5039–5048.
(40) Lash, T. D. Recent advances on the synthesis and chemistry of carbaporphyrins and related porphyrinoid systems.
Eur. J. Org. Chem. 2007, 2007, 5461–5481.
(41) Huang, C.; Li, Y.; Yang, J. E.; Cheng, N.; Liu, H.; Li, Y. Construction of multidimensional nanostructures by self-assembly of a porphyrin analogue. Chem. Commun. 2010, 46, 3161–3163.
(42) Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and characterization of porphyrin nanoparticles.
J. Am. Chem. Soc. 2002, 124, 14290–14291.
(43) Li, Y. J.; Zhao, Y. J.; Flood, A. H.; Liu, C.; Liu, H. B.; Li, Y. L. Nanometer-sized reactor—a porphyrin-based model system for anion species. Chem. Eur. J. 2011, 17, 7499–7505.
(44) Zhang, J.; Li, Y.; Yang, W.; Lai, S. W.; Zhou, C.; Liu, H.; Che, C. M.; Li, Y. A smart porphyrin cage for recognizing
azide anions. Chem. Commun. 2012, 48, 3602–3604.
(45) Zhang, B.; Mu, J.; Li, X. Linear assemblies of aged CdS particles and cationic porphyrin in multilayer films. Appl. Surf. Sci. 2006, 252, 4990–4994.
(46) Li, X.; Gao, X.; Mu, J. A new type of self-assembly film of water-soluble porphyrin alternating CdSe nanoparticles. Mater. Lett. 2005, 59, 53–55.
(47) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. Molecular optoelectronic gates. J. Am. Chem. Soc. 1996, 118, 3996–3997.
(48) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566.
(49) Gosztola, D.; Niemczyk, M. P.; Wasielewski, M. R. Picosecond molecular switch based on bidirectional inhibition of photoinduced electron transfer using photogenerated electric fields. J. Am. Chem. Soc. 1998, 120, 5118–5119.
(50) Van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J. Energy-transfer modeling for the rational design of multiporphyrin light-harvesting arrays. J. Phys. Chem. B 1998, 102, 4209–4216.
(51) Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 1993, 26, 198–205.
(52) Harriman, A.; Sauvage, J. P. A strategy for constructing photosynthetic models: porphyrin-containing modules assembled around transition metals. Chem. Soc. Rev. 1996, 25, 41–48.
(53) Wagner, R. W.; Lindsey, J. S. A molecular photonic wire. J. Am. Chem. Soc. 1994, 116, 9759–9760.
(54) Jasat, A.; Dolphin, D. Expanded porphyrins and their heterologs. Chem. Rev. 1997, 97, 2267–2340.
(55) Lehn, J. M. Toward self-organization and complex matter. Science 2002, 295, 2400–2403.
(56) Li, Y.; Flood, A. H. Strong, size-selective, and electronically tunable C−H···halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J. Am. Chem. Soc. 2008, 130, 12111–12122.
(57) Li, Y.; Pink, M.; Karty, J. A.; Flood, A. H. Dipole-promoted and size-dependent cooperativity between pyridyl-containing triazolophanes and halides leads to persistent sandwich complexes with iodide. J. Am. Chem. Soc. 2008, 130, 17293–17295.
(58) Li, Y.; Flood, A. H.; Pure, C. H. Hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor.
Angew. Chem. Int. Ed. 2008, 47, 2649–2652.
(59) Li, Y.; Huffman, J. C.; Flood, A. H. Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. 2007, 0, 2692–2694.
(60) Li, Y.; Xu, L.; Yang, W.; Liu, H.; Lai, S.; Che, C.; Li, Y. Amidetriazole: a versatile building block for construction of oxyanion anion receptors. Chem. Eur. J. 2012, 18, 4782–4790.
(61) Zhao, Y.; Li, Y.; Li, Y.; Zheng, H.; Yin, X.; Liu, H. Construction of an interpenetrated structure of macrocycles.
Chem. Commun. 2010, 46, 5698–5700.
(62) Zhao, Y. J.; Li, Y. L.; Li, Y. J.; Huang, C. S.; Liu, H. B.; Lai, S. W.; Che, C. M.; Zhu, D. B. Self-assembly of indolocarbazole-containing macrocyclic molecules. Org. Biomol. Chem. 2010, 8, 3923–3927.
(63) Xu, L.; Li, Y.; Yu, Y.; Liu, T.; Cheng, S.; Liu, H.; Li, Y. A receptor incorporating OH, NH and CH binding motifs for a fluoride selective chemosensor. Org. Biomol. Chem. 2012, 10, 4375–4380.
(64) Zhao, Y.; Li, Y.; Qin, Z.; Jiang, R.; Liu, H.; Li, Y. Selective and colorimetric fluoride anion chemosensor based on s-tetrazines. J. Chem. Soc., Dalton Trans. 2012, 41, 13338–13342.
(65) Anderson, H. L.; Martin, S. J.; Bradley, D. D. C. Synthesis and third-order nonlinear optical properties of a conjugated porphyrin polymer. Angew. Chem. Int. Ed. Engl. 1994, 33, 655–657.
(66) Cho, H. S.; Jeong, D. H.; Cho, S.; Kim, D.; Matsuzaki, Y.; Tanaka, K.; Tsuda, A.; Osuka, A. Photophysical properties of porphyrin tapes. J. Am. Chem. Soc. 2002, 124, 14642–14654.
(67) Jiang, L.; Jiu, T.; Li, Y.; Li, Y.; Yang, J.; Li, J.; Li, C.; Liu, H.; Song, Y. Excited-state absorption and sign tuning of nonlinear refraction in porphyrin derivatives. J. Phys. Chem. B 2007, 112, 756–759.
(68) Katz, H. E.; Scheller, G.; Putvinski, T. M.; Sshilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 1991, 254, 1485–1487.
(69) Gulino, A.; Compagnini, G.; Scalisi, A. A. Large third-order nonlinear optical properties of cadmium
oxide thin films. Chem. Mater. 2003, 15, 3332–3336.
(70) Decher, G.; Hong, J. D.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992, 210–211, Part 2, 831–835.
(71) Krass, H.; Papastavrou, G.; Kurth, D. G. Layer-by-layer self-assembly of a polyelectrolyte bearing metal ion coordination and electrostatic functionality. Chem. Mater. 2002, 15, 196–203.
(72) Wood, G. L.; Miller, M. J.; Mott, A. G. Investigation of tetrabenzporphyrin by the Z-scan technique. Opt. Lett. 1995, 20, 973–975.
(73) Jiang, L.; Lu, F.; Gao, Y.; Song, Y.; Liu, H.; Gan, H.; Jiu, T.; Li, Y.; Li, Y.; Wang, S.; Zhu, D. Nonlinear optical properties of an ultrathin film containing porphyrin and poly (phenylenevinylene) units. Thin Solid Films 2006, 496, 311–316.
(74) O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.
(75) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500.
(76) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583–585.
(77) Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260.
(78) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: the case for thin-film solar cells. Science 1999, 285, 692-698.
(79) Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277.
(80) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Expanding roles for templates in synthesis. Acc. Chem. Res. 1993, 26, 469–475.
(81) Seth, J.; Palaniappan, V.; Wagner, R. W.; Johnson, T. E.; Lindsey, J. S.; Bocian, D. F. Soluble synthetic multiporphyrin arrays. 3. static spectroscopic and electrochemical probes of electronic communication. J. Am. Chem. Soc. 1996, 118, 11194–11207.
(82) Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. An artificial photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 1999, 121, 8604–8614.
(83) Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 2002, 31, 22–36.
(84) Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Natural engineering principles of electron tunnelling in biological
oxidation-reduction. Nature 1999, 402, 47–52.
(85) Guldi, D. M.; Pellarini, F.; Prato, M.; Granito, C.; Troisi, L. Layer-by-layer construction of nanostructured porphyrin-fullerene electrodes. Nano. Lett. 2002, 2, 965–968.
(86) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. J. Am. Chem. Soc. 1997, 119, 1400–1405.
(87) Kuciauskas, D.; Liddell, P. A.; Moore, A. L.; Moore, T. A.; Gust, D. Magnetic switching of charge separation lifetimes in artificial photosynthetic reaction centers. J. Am. Chem. Soc. 1998, 120, 10880–10886.
(88) Armaroli, N.; Marconi, G.; Echegoyen, L.; Bourgeois, J. P.; Diederich, F. Charge-transfer interactions in face-to-face porphyrin-fullerene systems: solvent-dependent luminescence in the infrared spectral region. Chem. Eur. J. 2000, 6, 1629–1645.
(89) Dotcheva, D.; Klapper, M.; Müllen, K. Soluble polyimides containing perylene units. Macromol. Chem. Phys. 1994, 195, 1905–1911.
(90) Quante, H.; Geerts, Y.; Müllen, K. Synthesis of soluble perylenebisamidine derivatives. novel long-wavelength absorbing and fluorescent dyes. Chem. Mater. 1997, 9, 495–500.
(91) O'Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.; Gaines, G. L.; Wasielewski, M. R. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science 1992, 257, 63–65.
(92) Gregg, B. A. Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem. Phys. Lett. 1996, 258, 376–380.
(93) Xu, L.; Liu, C.; Qin, Z.; Jiang, R.; Li, Y. Core expansion of perylenetetracarboxdiimide dyes with anthraquinone units for electron-accepting materials. Eur. J. Org. Chem. 2013, 2013, 300–306.
(94) Xiao, S. Q.; Li, Y. L.; Li, Y. J.; Zhuang, J. P.; Wang, N.; Liu, H. B.; Ning, B.; Liu, Y.; Lu, F. S.; Fan, L. Z.; Yang, C. H.; Li, Y. F.; Zhu, D. B. [60]Fullerene-based molecular triads with expanded absorptions in the visible region: synthesis and photovoltaic properties. J. Phys. Chem. B 2004, 108, 16677–16685.
(95) Li, Y. J.; Li, Y. L.; Liu, H. B.; Wang, S.; Wang, N.; Zhuang, J. P.; Li, X. F.; He, X. R.; Zhu, D. B. Self-assembled monolayers of porphyrin–perylenetetracarboxylic diimide-[60] fullerene on indium tin oxide electrodes: enhancement of light harvesting in the visible light region. Nanotechnology 2005, 16, 1899–1904.
(96) Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R. Biomimetic electron transfer using low energy excited states: a green perylene-based analogue of chlorophyll a. J. Phys. Chem. B 2002, 106, 1299–1306.
(97) Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and excited-state photodynamics of perylene-porphyrin dyads. 1. parallel energy and charge transfer via a diphenylethyne linker. J. Phys. Chem. B 2001, 105, 8237–8248.
(98) Yang, S. I.; Prathapan, S.; Miller, M. A.; Seth, J.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Synthesis and excited-state photodynamics in perylene-porphyrin dyads 2. effects of porphyrin metalation state on the energy-transfer, charge-transfer, and deactivation channels. J. Phys. Chem. B 2001, 105, 8249–8258.
(99) Ik Yang, S.; Lammi, R. K.; Prathapan, S.; Miller, M. A.; Seth, J.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Synthesis and excited-state photodynamics of perylene-porphyrin dyads part 3. effects of perylene, linker, and connectivity on ultrafast energy transfer. J. Mater. Chem. 2001, 11, 2420–2430.
(100) Miller, M. A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. A tightly coupled linear array of perylene, bis(porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade. J. Org. Chem. 2000, 65, 6634–6649.
(101) Xiao, S.; El-Khouly, M. E.; Li, Y.; Gan, Z.; Liu, H.; Jiang, L.; Araki, Y.; Ito, O.; Zhu, D. Dyads and triads containing perylenetetracarboxylic diimide and porphyrin: efficient photoinduced electron transfer elicited via both excited singlet states. J. Phys. Chem. B 2005, 109, 3658–3667.
(102) Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B. D.; Pinnau, I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions. Prog. Polym. Sci. 2001, 26, 721–798.
(103) Ikeda, A.; Hatano, T.; Shinkai, S.; Akiyama, T.; Yamada, S. Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. J. Am. Chem. Soc. 2001, 123, 4855–4856.
(104) Nishimura, T.; Takatani, K.; Sakurai, S. I.; Maeda, K.; Yashima, E. A helical array of pendant fullerenes on an optically active polyphenylacetylene. Angew. Chem. Int. Ed. 2002, 41, 3602–3604.
(105) Lu, F.; Xiao, S.; Li, Y.; Liu, H.; Li, H.; Zhuang, J.; Liu, Y.; Wang, N.; He, X.; Li, X.; Gan, L.; Zhu, D. Synthesis and chemical properties of conjugated polyacetylenes having pendant fullerene and/or porphyrin units. Macromolecules 2004, 37, 7444–7450.
(106) Wang, N.; Li, Y.; Lu, F.; Liu, Y.; He, X.; Jiang, L.; Zhuang, J.; Li, X.; Li, Y.; Wang, S.; Liu, H.; Zhu, D. Fabrication of novel conjugated polymer nanostructure: porphyrins and fullerenes conjugately linked to the polyacetylene backbone as pendant groups. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2851–2861.
(107) Wang, N.; Lu, F.; Huang, C.; Li, Y.; Yuan, M.; Liu, X.; Liu, H.; Gan, L.; Jiang, L.; Zhu, D. Construction of diads and triads copolymer systems containing perylene, porphyrin, and/or fullerene blocks. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5863–5874.
(108) Nath, S.; Pal, H.; Palit, D. K.; Sapre, A. V.; Mittal, J. P. Aggregation of fullerene, C60, in benzonitrile. J. Phys. Chem. B 1998, 102, 10158–10164.
(109) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.
(110) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199.
(111) Kim, Y.; Swager, T. M. Ultra-photostable n-type PPVs. Chem. Commun. 2005, 0, 372–374.
(112) Alam, M. M.; Jenekhe, S. A. Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem. Mater. 2004, 16, 4647–4656.
(113) Aldred, M. P.; Vlachos, P.; Contoret, A. E. A.; Farrar, S. R.; Chung-Tsoi, W.; Mansoor, B.; Woon, K. L.; Hudson, R.; Kelly, S. M.; O'Neill, M. Linearly polarised organic light-emitting diodes (OLEDs): synthesis and characterisation of a novel hole-transporting photoalignment copolymer. J. Mater. Chem. 2005, 15, 3208–3213.
(114) Kim, K.; Kim, B. H.; Joo, S. H.; Park, J. S.; Joo, J.; Jin, J. I. Photoconductivity of single-bilayer nanotubes consisting of poly(p-phenylenevinylene) (PPV) and carbonized-PPV layers. Adv. Mater. 2005, 17, 464–468.
(115) Chen, Y.; Araki, Y.; Doyle, J.; Strevens, A.; Ito, O.; Blau, W. J. Synthesis, characterization, and optoelectronic properties of a novel polyfluorene/poly(p-phenylenevinylene) copolymer. Chem. Mater. 2005, 17, 1661–1666.
(116) Huang, C.; Wang, N.; Li, Y.; Li, C.; Li, J.; Liu, H.; Zhu, D. A new class of conjugated polymers having porphyrin, poly(p-phenylenevinylene), and fullerene units for efficient electron transfer. Macromolecules 2006, 39, 5319–5325.
(117) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads: marcus-normal versus inverted region. J. Am. Chem. Soc. 2001, 123, 2607–2617.
(118) Li, Y.; Gan, Z.; Wang, N.; He, X.; Li, Y.; Wang, S.; Liu, H.; Araki, Y.; Ito, O.; Zhu, D. Synthesis and characterization of porphyrin-ferrocene-fullerene triads. Tetrahedron 2006, 62, 4285–4293.
(119) Gaylord, B. S.; Wang, S.; Heeger, A. J.; Bazan, G. C. Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescence-quenching efficiencies. J. Am. Chem. Soc. 2001, 123, 6417–6418.
(120) Jonkheijm, P.; Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.; Schenning, A. P. H. J.; Meijer, E. W. Transfer of π-conjugated columnar stacks from solution to surfaces. J. Am. Chem. Soc. 2003, 125, 15941–15949.
(121) Nagata, T.; Osuka, A.; Maruyama, K. Synthesis and optical properties of conformationally constrained trimeric and pentameric porphyrin arrays. J. Am. Chem. Soc. 1990, 112, 3054–3059.
(122) Kumble, R.; Palese, S.; Lin, V. S. Y.; Therien, M. J.; Hochstrasser, R. M. Ultrafast dynamics of highly conjugated porphyrin arrays. J. Am. Chem. Soc. 1998, 120, 11489–11498.
(123) Cho, H. S.; Rhee, H.; Song, J. K.; Min, C. K.; Takase, M.; Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. Excitation energy transport processes of porphyrin monomer, dimer, cyclic trimer, and hexamer probed by ultrafast fluorescence anisotropy decay. J. Am. Chem. Soc. 2003, 125, 5849–5860.
(124) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer, E. W. Sequential energy and electron transfer in aggregates of tetrakis[oligo(p-phenylene vinylene)] porphyrins and C60 in water. J. Am. Chem. Soc. 2005, 127, 13484–13485.
(125) Jiu, T.; Li, Y.; Gan, H.; Li, Y.; Liu, H.; Wang, S.; Zhou, W.; Wang, C.; Li, X.; Liu, X.; Zhu, D. Synthesis of oligo(p-phenylene vinylene)-porphyrin-oligo(p-phenylene vinylene) triads as antenna molecules for energy transfer. Tetrahedron 2007, 63, 232–240.
(126) “There’s plenty of room at the bottom,” a talk by Richard Feynman at the annual meeting of the American Physical Society given on December 29, 1959. Reprinted in Caltech’s Engineering and Science, February 1960, pp 22–36. |