Synthesis, Crystal Structure and Properties of a Novel Coordination Polymer Based on a Trinuclear Mn(II) Cluster: [Mn3(bpta)2(bip)2]n
王淑菊;田彦文;由立新;丁茯;孙亚光
1. 沈阳化工大学
2. 东北大学
Synthesis, Crystal Structure and Properties of a Novel Coordination Polymer Based on a Trinuclear Mn(II) Cluster: [Mn3(bpta)2(bip)2]n
WANG Shu-Ju;TIAN Yan-Wen;YOU Li-Xin;DING Fu;SUN Ya-Guang
a (School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China)
b (Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China)
摘要The coordination polymer, [Mn3(bpta)2(bip)2]n (H3bpta = biphenyl-3,3',5-tricar- boxylic acid, bip = 2,6-bis(imidazole-1-yl)pyridine), has been synthesized under hydrothermal con- ditions and characterized by elemental analysis, FT-IR, XRD, TGA and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group P21/cwith α = 14.919(3), b = 9.780(2), c = 20.352(7) Å, V = 2344.4(10) Å3, Z = 2, C52H32Mn3N10O12, Mr = 1153.70, Dc= 1.634 g/cm3, μ(MoKα) = 0.876 mm-1, F(000) = 1170, the final R = 0.0605 and wR = 0.1177. The complex forms a 2D layer with trinuclear Mn(II) units andfurther assembles into a 3D supramolecular network structure through C–H···O hydrogen bonding and C–H···π interactions. Moreover, the negative J value indicates the presence of antiferromagnetic coupling between the Mn(II) ions within a trinuclear
Abstract: The coordination polymer, [Mn3(bpta)2(bip)2]n (H3bpta = biphenyl-3,3',5-tricar- boxylic acid, bip = 2,6-bis(imidazole-1-yl)pyridine), has been synthesized under hydrothermal con- ditions and characterized by elemental analysis, FT-IR, XRD, TGA and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group P21/cwith α = 14.919(3), b = 9.780(2), c = 20.352(7) Å, V = 2344.4(10) Å3, Z = 2, C52H32Mn3N10O12, Mr = 1153.70, Dc= 1.634 g/cm3, μ(MoKα) = 0.876 mm-1, F(000) = 1170, the final R = 0.0605 and wR = 0.1177. The complex forms a 2D layer with trinuclear Mn(II) units andfurther assembles into a 3D supramolecular network structure through C–H···O hydrogen bonding and C–H···π interactions. Moreover, the negative J value indicates the presence of antiferromagnetic coupling between the Mn(II) ions within a trinuclear
基金资助:This work was conducted in the framework of a project sponsored by the National Natural Science Foundation of China (No. 21071100), Liaoning Baiqianwan Talents Program and the LNET (LJQ2011038)
王淑菊;田彦文;由立新;丁茯;孙亚光 . Synthesis, Crystal Structure and Properties of a Novel Coordination Polymer Based on a Trinuclear Mn(II) Cluster: [Mn3(bpta)2(bip)2]n[J]. 结构化学, 2013, 32(11): 1633-1638.
WANG Shu-Ju;TIAN Yan-Wen;YOU Li-Xin;DING Fu;SUN Ya-Guang. Synthesis, Crystal Structure and Properties of a Novel Coordination Polymer Based on a Trinuclear Mn(II) Cluster: [Mn3(bpta)2(bip)2]n. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2013, 32(11): 1633-1638.
(1) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.
(2) Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J. X.; Takata, M.; Kubota Y.; Kitagawa, S. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. J. Am. Chem. Soc. 2008, 130, 13664–13672.
(3) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.
(4) Xu, H. B.; Zhang, L. Y.; Xie, Z. L.; Ma, E.; Chen, Z. N. Heterododecanuclear Pt6Ln6 (Ln = Nd, Yb) arrays of 4-ethynyl-2,2′-bipyridine with sensitized near-IR lanthanide luminescence by Pt → Ln energy transfer. Chem. Commun. 2007, 2744–2746.
(5) Banerjee, D.; Finkelstein, J.; Smirnov, A.; Forster, P. M.; Borkowski, L. A.; Teat, S. J.; Parise, J. B. Synthesis and structural characterization of magnesium based coordination networks in different solvents. Cryst. Growth Des. 2011, 11, 2572–2579.
(6) Mandal, S. K.; Roesky, H. W. Assembling heterometals through oxygen: an efficient way to design homogeneous catalysts.
Acc. Chem. Res. 2010, 43, 248–259.
(7) Plecnik, C. E.; Liu, S. M.; Shore, S. G. Lanthanide-transition-metal complexes: from ion pairs to extended arrays.
Acc. Chem. Res. 2003, 36, 499–508.
(8) Gates, B. C. Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 1995, 95, 511–522.
(9) Qiu, J.; Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 2013, 113, 1097–1120.
(10) Cui, J. H.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. A porous metal-organic framework based on Zn6O2 clusters: chemical stability, gas adsorption properties and solvatochromic behavior. Chem. Commun. 2013, 49, 555–557.
(11) He, X.; Gao, C. Y.; Wang, M. X.; Zhao, L. Designed synthesis of a metal cluster-pillared coordination cage.
Chem. Commun. 2012, 48, 10877–10879.
(12) Zhang, Q.; Zheng, Y. X.; Liu, C. X.; Sun, Y. G.; Gao, E. J. Three-dimensional 3d-4f heterometallic coordination polymer containing Sm2Mn4 clusters: synthesis, crystal structure and properties. Inorg. Chem. Commun. 2009, 12, 523–526.
(13) Suh, M. P.; Moon, H. R.; Lee, E. Y.; Jang, S. Y. A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J. Am. Chem. Soc. 2006, 128, 4710–4718.
(14) Guo, Z. Y.; Xu, H.; Su, S. Q.; Cai, J. F.; Dang, S.; Xiang, S. C.; Qian, G. D.; Zhang, H. J.; O’Keeffed, M.; Chen, B. L. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun. 2011, 47, 5551–5553.
(15) Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831.
(16) Sheldrick, G. M. Program SADABS: Area-detector Absorption Correction. University of Göttingen, Germany 1996.
(17) Sheldrick, G. M. SHELXL-97, University of Göttingen: Göttingen, Germany 1997.
(18) Wang, Y. Q.; Zhang, J. Y.; Jia, Q. X.; Gao, E. Q.; Liu, C. M. Unprecedented self-catenated eight-connected network based on novel azide-bridged tetramanganese(II) clusters. Inorg. Chem. 2009, 48, 789–791.
(19) Baca, S. G.; Sevryugina, Y.; Clérac, R.; Malaestean, I.; Gerbeleu, N.; Petrukhina, M. A. Linear trinuclear manganese(II) complexes: crystal structures and magnetic properties. Inorg. Chem. Commun. 2005, 8, 474–478.
(20) Chen, Y. Q.; Liu, S. J.; Li, Y. W.; Li, G. R.; He, K. H.; Chang, Z.; Bu, X. H. Mn(II) metal-organic frameworks based on Mn3 clusters: from 2D layer to 3D framework by the “pillaring” approach. CrystEngComm. 2013, 15, 1613–1617.
(21) Shen, C. J.; Chen, J. S.; Sheng, T. L.; Fu, R. B.; Hu, S. M.; Xiang, S. C.; Qin, Z. T.; Wang, X.; He, Y. M.; Wu, X. T. Trinuclear and dinuclear manganese complexes of 2/4-formylbenzoic acid oxime ligands: syntheses and crystal structures. Chin. J. Struct. Chem. 2008, 27, 899–906.
(22) Zhang, M. Y.; Shan, W. J.; Han, Z. B. Syntheses and magnetic properties of three Mn(II) coordination polymers based on a tripodal flexible ligand. CrystEngComm. 2012, 14, 1568–1574.
(23) Hsu, K. F.; Wang, S. L. Novel gallium phosphate framework encapsulating trinuclear Mn3(H2O)6O8 cluster: hydrothermal synthesis and characterization of Mn3(H2O)6Ga4(PO4)6. Inorg. Chem. 2000, 39, 1773–1778.
(24) Kahn, O. Molecular Magnetism, VCH Publishers Inc.: New York 1993, p211.