Crystal Structure, Photoluminescence and Theoretical Studies of Diethyl 4,5-di(thienyl)-3,6-bis(trimethylsilyl)phthalate
唐建可;牛心蕙;蒋丽丽;曲红梅
天津大学化工学院制药工程系
Crystal Structure, Photoluminescence and Theoretical Studies of Diethyl 4,5-di(thienyl)-3,6-bis(trimethylsilyl)phthalate
TANG Jian-Ke;NIU Xin-Hui;JIANG Li-Li;QU Hong-Mei
Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Department of Pharmaceutical Engineering,School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
摘要The crystal structure of the title compound, diethyl 4,5-di(thienyl)-3,6-bis(trime- thylsilyl)phthalate (C26H34O4S2Si2, Mr = 530.83), has been determined by single-crystal X-ray diffraction. The crystal belongs to the orthorhombic system, space group Pccn with α = 43.008(5), b = 10.9000(12), c = 11.9357(14) Å, V = 5595.3(11) Å3, Z = 8, F(000) = 2256, Dc = 1.260 mg/m3, µ = 0.305 mm−1, T = 113(2) K, S = 1.090, R = 0.0413 and wR = 0.0969 for 5952 observed reflections with I > 2σ(I). The benzene ring system is planar and makes dihedral angles of 63.7(2)° and 72.5(4)° with the two thienyl rings A (C(23)~C(26), S(2)) and B (C(19)~C(22), S(1)), respectively. The UV-vis absorption and fluorescence of the title compound were discussed. The molecular structure of the title compound has been optimized using DFT method at the B3LYP/6-31G(d) level. The computational results showed that the optimized geometer parameters are consistent well with the experiment data. The vertical ionization potential, vertical electron affinity and frontier orbitals were also discussed.
Abstract:The crystal structure of the title compound, diethyl 4,5-di(thienyl)-3,6-bis(trime- thylsilyl)phthalate (C26H34O4S2Si2, Mr = 530.83), has been determined by single-crystal X-ray diffraction. The crystal belongs to the orthorhombic system, space group Pccn with α = 43.008(5), b = 10.9000(12), c = 11.9357(14) Å, V = 5595.3(11) Å3, Z = 8, F(000) = 2256, Dc = 1.260 mg/m3, µ = 0.305 mm−1, T = 113(2) K, S = 1.090, R = 0.0413 and wR = 0.0969 for 5952 observed reflections with I > 2σ(I). The benzene ring system is planar and makes dihedral angles of 63.7(2)° and 72.5(4)° with the two thienyl rings A (C(23)~C(26), S(2)) and B (C(19)~C(22), S(1)), respectively. The UV-vis absorption and fluorescence of the title compound were discussed. The molecular structure of the title compound has been optimized using DFT method at the B3LYP/6-31G(d) level. The computational results showed that the optimized geometer parameters are consistent well with the experiment data. The vertical ionization potential, vertical electron affinity and frontier orbitals were also discussed.
(1) Cielen, E.; Stobiecka, A.; Tahri, A; Hoornaert, G. J.; Schryver, F. C. D.; Gallay, J.; Vincent, M.; Boens, N. Synthesis and characterisation of Thio-H, a new excitation and emission ratioable fluorescent Ca2+/Mg2+ indicator with high brightness. J. Chem. Soc. Perkin Trans. 2 2002, 6, 1197–1206.
(2) Kobatake, S.; Imagawa, H.; Nakatani, H.; Nakashima, S. The irreversible thermo-bleaching function of a photochromic diarylethene having trimethylsilyl groups. New J. Chem. 2009, 33, 1362–1367.
(3) Pauluth, D.; Tarumi, K. Advanced liquid crystals for television. J. Mater. Chem. 2004, 14, 1219–1227.
(4) Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Cyclisierende polymerisation von acetylen I Über
cyclooctatetraen. Justus Liebigs Ann. Chem. 1948, 560, 1–92.
(5) Reppe, W.; Schweckendiek, W. J. Cyclisierende polymerisation von acetylen III benzol, benzolderivate und hydroaromatische verbindungen. Justus Liebigs Ann. Chem. 1948, 560, 104–116.
(6) Vollhardt, K. P. C. Transition-metal-catalyzed acetylene cyclizations in organic synthesis. Acc. Chem. Res. 1977, 10, 1–8.
(7) Vollhardt, K. P. C. Cobalt-mediated [2 + 2+ 2]-cycloadditions: a maturing synthetic strategy. Angew. Chem. Int. Ed. Engl. 1984, 23, 539–556.
(8) Schore, N. E. Transition-metal-mediated cycloaddition reactions of alkynes in organic synthesis. Chem. Rev. 1988, 88, 1081–1119.
(9) Schore, N. E.; Trost, B. M.; Fleming, I.; Paquette, L. A. Comprehensive Organic Synthesis Vol. 5. Pergamon Press: Oxford 1991, 1129–1162.
(10) Saito, S.; Yamamoto, Y. Recent advances in the transition-metal-catalyzed regioselective approaches
to polysubstituted benzene derivatives. Chem. Rev. 2000, 100, 2901–2915.
(11) Yamamoto, Y. Recent advances in intramolecular alkyne cyclotrimerization and its applications. Curr. Org. Chem. 2005, 9, 503–519.
(12) Grotjahan, D. B.; Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; Hegedus, L. Comprehensive Organometallic
Chemistry II Vol. 12. Pergamon Press: Oxford 1995, 741–770.
(13) Frühauf, H. W. Metal-assisted cycloaddition reactions in organotransition metal chemistry. Chem. Rev. 1997, 97, 523–596.
(14) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Transition metal-catalyzed carbocyclizations
in organic synthesis. Chem. Rev. 1996, 96, 635–662.
(15) Kotha, S.; Brahmachary, E.; Lahiri, K. Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in
organic synthesis. Eur. J. Org. Chem. 2005, 22, 4741–4767.
(16) Li, S.; Qu, H.; Zhou, L.; Kanno, K. I.; Guo, Q.; Shen, B.; Takahashi, T. Zirconium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes from two silyl-substituted alkynes and one internal alkyne. Org. Lett. 2009, 11, 3318–3321.
(17) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.
(18) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.
(19) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.
(20) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into
a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
(21) Johnson, B. G.; Gill, P. M. W.; Pople, J. A. The performance of a family of density functional methods. J. Chem. Phys. 1993, 98, 5612–5626.
(22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 01, Gaussian, Inc., Wallingford, CT 2004.
(23) Haberecht, M.; Lerner, H. W.; Bolte, M. p-Bis(trimethylsilyl)benzene: rerefinement against new intensity data. Acta Cryst. 2002, E58, o436–o437.
(24) Zhang, J.; Qu, H.; Zhang, Z.; Zhou, L. Diethyl 4,5-diphenyl-3,6-bis(trimethylsilyl)benzene-1,2-dicarboxylate. Acta Cryst. 2011, E67, o1864.
(25) Takahashi, T.; Li, S.; Huang, W.; Kong, F.; Nakajima, K.; Shen, B.; Ohe, T.; Kanno, K. I. Homologation method for preparation of substituted pentacenes and naphthacenes. J. Org. Chem. 2006, 71, 7967–7977.
(26) Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195.
(27) Burdett, J. K.; Coddens, B. A.; Kulkarni, G. V. Band gap and stability of solids. Inorg. Chem. 1988, 27, 3259–3261.
(28) Zhou, Z.; Parr, R. G. Activation hardness: new index for describing the orientation of electrophilic aromatic
substitution. J. Am. Chem. Soc. 1990, 112, 5720–5724.
(29) Manolopoulos, D. E.; May, J. C.; Down, S. E. Theoretical studies of the fullerenes: C34 to C70. Chem. Phys. Lett. 1991, 181, 105–111.