Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction
Tao Yang; Pengke Deng; Lele Wang; Jie Hu*; Qinqin Liu*; Hua Tang*
1School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China 2School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction
Tao Yang; Pengke Deng; Lele Wang; Jie Hu*; Qinqin Liu*; Hua Tang*
1School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China 2School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
The low separation efficiency of the photogenerated charges has always been an obstacle in practical application of semiconduc-tor-photocatalysts. S-scheme heterojunction is expected to break the barrier and achieve high photocatalytic activity by boosting the charge separation. Herein, a novel Ag3PO4/C3N4 heterojunction was successfully synthesized by in-situ coupling Ag3PO4 particle with C3N4 hollow spheres via a precipitation method. The Ag3PO4/C3N4 heterojunction could synchronously realize high photocatalytic oxygen production and hexavalent chromium reduction. The charge transfer of the composite follows the S-scheme charge transfer routes driven by the formed internal electric field, which accele-rates the photogenerated carrier separation and retains high photoredox ability. The optimized composite affords a high oxygen production rate of 803.31 µmol·g-1·h-1 and 87.9% conversion of Cr(VI). In addition, employing the C3N4 hollow spheres as reduction semiconductor in the S-scheme heterojunction will afford higher reaction efficiency than the C3N4 tube, C3N4 bulk and C3N4 sheet, which indicates that the hollow sphere structure of C3N4 provides more active sites and adsorption sites for boosting the photocatalytic activity. This work illustrates an applicable strategy to develop high-efficient dual functional-photocatalyst toward clean energy conversion and environmental protection.
The low separation efficiency of the photogenerated charges has always been an obstacle in practical application of semiconduc-tor-photocatalysts. S-scheme heterojunction is expected to break the barrier and achieve high photocatalytic activity by boosting the charge separation. Herein, a novel Ag3PO4/C3N4 heterojunction was successfully synthesized by in-situ coupling Ag3PO4 particle with C3N4 hollow spheres via a precipitation method. The Ag3PO4/C3N4 heterojunction could synchronously realize high photocatalytic oxygen production and hexavalent chromium reduction. The charge transfer of the composite follows the S-scheme charge transfer routes driven by the formed internal electric field, which accele-rates the photogenerated carrier separation and retains high photoredox ability. The optimized composite affords a high oxygen production rate of 803.31 µmol·g-1·h-1 and 87.9% conversion of Cr(VI). In addition, employing the C3N4 hollow spheres as reduction semiconductor in the S-scheme heterojunction will afford higher reaction efficiency than the C3N4 tube, C3N4 bulk and C3N4 sheet, which indicates that the hollow sphere structure of C3N4 provides more active sites and adsorption sites for boosting the photocatalytic activity. This work illustrates an applicable strategy to develop high-efficient dual functional-photocatalyst toward clean energy conversion and environmental protection.
基金资助:This work is supported by the National Natural Science Founda-tion of China (21975110, 21972058 and 22102064), and Prof. H. Tang gratefully acknowledges the financial support from Taishan Youth Scholar Program of Shandong Province.
通讯作者:
Jie Hu*; Qinqin Liu*; Hua Tang*
E-mail: huatang79@163.com; hujiechem@hotmail.com and qqliu@ujs.edu.cn
引用本文:
Tao Yang; Pengke Deng; Lele Wang; Jie Hu*; Qinqin Liu*; Hua Tang*. Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction[J]. 结构化学, 2022, 41(6): 2206023-2206030.
Tao Yang; Pengke Deng; Lele Wang; Jie Hu*; Qinqin Liu*; Hua Tang*. Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2022, 41(6): 2206023-2206030.
(1) Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L.; Li, H.; Li, J. Y.; Li, A.; Sun, Y. Y.; Zhang, S. B.; Yang, G.; Guo, Y. Z.; Yang, S. Z.; Zhou, T. H.; Dong, F.; Zheng, K.; Wang, L. H.; Huang, J.; Zhang, Z.; Han, X. D. Co and Pt dual single atoms with oxygen coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.
(2) Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 131338.
(3) Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen doped graphene based photocatalyst. Adv. Mater. 2021, 33, 2003521.
(4) Sun, J. L.; Hou, Y. P.; Yu, Z. B.; Tu, L. L.; Yan, Y. M.; Qin, S. M.; Chen, S.; Lan, D. Q.; Zhu, H. X.; Wang, H. F. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr(VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism. J. Hazard. Mater. 2021, 419, 126543.
(5) Chen, Z. L.; Luo, Y. Y.; Huang, C. X.; Shen, X. T. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chem. Eng. J. 2021, 414, 128914.
(6) Liu, H. D.; Cheng, M.; Liu, Y.; Zhang, G. X.; Li, L.; Du, L.; Li, B.; Xiao, S.; Wang, G. F.; Yang, X. F. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord. Chem. Rev. 2022, 458, 214428.
(7) Wang, Y. N.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.
(8) Li, D. S.; Liu, Y.; Yang, Y. T.; Tang, G. G.; Tang, H. Rational construction of Ag3PO4/WO3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O2 evolution and pollutant degradation. J. Colloid Interface Sci. 2022, 608, 2549-2559.
(9) Meng, L.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nano-
particles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.
(10) Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.
(11) Liu, Y. X.; Yang, D. Z.; Xu, T.; Shi, Y. Z.; Song, L. N.; Yu, Z. Z. Continuous photocatalytic removal of chromium (VI) with structurally stable and porous Ag/Ag3PO4/reduced graphene oxide microspheres. Chem. Eng. J. 2020, 379, 122200.
(12) Megala, S.; Ravi, P.; Maadeswaran, P.; Navaneethan, M.; Ramesh, R. The construction of a dual direct Z-scheme NiAl LDH/g-C3N4/Ag3PO4 nanocomposite for enhanced photocatalytic oxygen and hydrogen evolution. Nanoscale Adv. 2021, 7, 2075-2088.
(13) Liu, Q. Q.; He, X. D.; Tao, J. N.; Tang, H.; Liu, Z. Q. Oxygen vacancies induced plasmonic effect for realizing broad-spectrum-driven photocatalytic H2 evolution over an S-scheme CdS/W18O49 heterojunction. ChemNanoMat 2020, 7, 44-49.
(14) Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2 production photocatalyst. Rare Metals 2021, 40, 2381-2391.
(15) Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 585, 470-479.
(16) Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2021, 34, 2107668.
(17) Jia, X. X.; Zhao, J. W.; Lv, Y. G.; Fu, X. L.; Jian, Y. J.; Zhang, W. Q.; Wang, Y. Y.; Sun, H. M.; Wang, X. X.; Long, J. L.; Yang, P.; Gu, Q.; Gao, Z. W. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic suzuki coupling. Appl. Catal., B-Environ. 2022, 300, 120756.
(18) Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Hot electron assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad spectrum photocatalytic H2 generation. Chin. J. Catal. 2021, 42, 1478-1487.
(19) Ren, M. L.; Ao, Y. H.; Wang, P. F.; Wang C. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem. Eng. J. 2019, 378, 122122.
(20) Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2021, 60, 25546-25550.
(21) Wang, G. C.; Zhang, T.; Yu, W. W.; Si, R.; Liu, Y. F.; Zhao, Z. K. Modulating location of single copper atoms in polymeric carbon nitride for enhanced photoredox catalysis. ACS Catal. 2020, 10, 5715-5722.
(22) Tang, H.; Xia, Z. H.; Chen, R.; Liu, Q. Q.; Zhou, T. H. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem. Asian J. 2020, 15, 3456-3461.
(23) Wu, Y.; Chen, J.; Che, H.; Gao, X.; Ao, Y.; Wang, P. Boosting 2 e- oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4-dichlorophenol. Appl. Catal., B-Environ. 2022, 307, 121185.
(24) Wu, X. H.; Ma, H. Q.; Zhong, W.; Fan, J. J.; Yu, H. G. Porous crystalline g-C3N4: bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl. Catal. B-Environ. 2020, 271, 118899.
(25) Lin, Y.; Yang, C. P.; Niu, Q. Y.; Luo, S. L. Interfacial charge transfer between silver phosphate and W2N3 induced by nitrogen vacancies enhances removal of β-lactam antibiotics. Adv. Funct. Mater. 2021, 32, 2108814.
(26) Prasad, C.; Tang, H.; Liu, Q. Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. J. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 337-379.
(27) Yang, Z. F.; Xia, X. N.; Shao, L. H.; Wang, L. L.; Liu, Y. T. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation. Chem. Eng. J. 2021, 410, 128454.
(28) Chang, H. B.; Liu, J. B.; Dong, Z.; Wang, D. D.; Xin, Y.; Jiang, Z. L.; Tang, S. S. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 modified AgNbO3 photocatalyst under visible-light irradiation. Chin. J. Struct. Chem. 2021, 40, 1595-1603.
(29) Naciri, Y.; Hsini, A.; Bouziani, A.; Djellabi, R.; Ajmal, Z.; Laabd, M.; Navío, J. A.; Mills, A.; Bianchi, C. L.; Li, H.; Bakiz, B.; Albourine, A. Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives. Crit. Rev. Environ. Sci. Technol. 2021, 2, 1-44.
(30) Liu, Q. Q.; Huang, J. X.; Wang, L. L.; Yu, X. H.; Sun, J. F.; Tang, H. Unraveling the roles of hot electrons and cocatalyst toward broad spectrum photocatalytic H2 generation of g-C3N4 nanotube. Sol. RRL 2021, 5, 2000504.
(31) Chen, G. H.; Wang, H. J.; Dong, W. Y.; Huang, Y. X.; Zhao, Z. L.; Zeng, Y. X. Graphene dispersed and surface plasmon resonance-
enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chem. Eng. J. 2021, 405, 126850.
(32) Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2 evolution. Appl. Catal. B-Environ. 2021, 290, 120057.
(33) Deng, C. L.; Sun, C. F.; Wang, Z.; Tao, Y. W.; Chen, Y. L.; Lin, J. Q.; Luo, G. G.; Lin, B. Z.; Sun, D.; Zheng L. S. A sodalite-type silver orthophosphate cluster in a globular silver nanocluster. Angew. Chem., Int. Ed. 2020, 59, 12659-12663.
(34) Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.
(35) Xiong, Z.; Hou, Y. D.; Yuan, R. S.; Ding, Z. X.; Ong, W. J.; Wang, S. B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys.-Chim. Sin. 2022, 38, 2111021.
(36) Li, B.; Wei, F.; Su, B.; Guo, Z.; Ding, Z.; Yang, M. Q.; Wang, S. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater. Today Energy 2022, 24, 100943.
(37) Lin, X. H.; Xie, Z. D.; Su, B.; Zheng, M.; Dai, W. X.; Hou, Y. D.; Ding, Z. X.; Lin, W.; Fang, Y. X.; Wang, S. B. Well-defined Co9S8 cages enable the separation of photoexcited charges to promote visible-light CO2 reduction. Nanoscale 2021, 13, 18070-18076.
(38) Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nanosheets with activated n→π* transition and preferred textural proper-
ties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166-176.
(39) Li, B. F.; Wang, W. J.; Zhao, J. W.; Wang, Z. Y.; Su, B.; Hou, Y. D.; Ding, Z. X.; Ong, W. J.; Wang, S. B. All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270-10276.
(40) Ma, X.; Cheng, H. F. Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites. Chem. Eng. J. 2022, 429, 132373.
(41) Zhou, L.; Zhang, X.; Cai, M.; Cui, N. X.; Chen, G. F.; Zou, G. Y. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light. Appl. Catal., B-Environ 2022, 302, 120868.
(42) Liu, Q. Q.; Huang, J. X.; Tang, H.; Yu, X. H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196-205.
(43) Shi, W. L.; Guo, F.; Yuan, S. L. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal., B-Environ. 2017, 209, 720-728.
(44) Han, S. T.; Li, B. F.; Huang, L. J.; Xi, H. L.; Ding, Z. X.; Long, J. J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013
(45) Wang, R.; Shen, J.; Zhang, W. J.; Liu, Q. Q.; Zhang, M. Y.; Zulfiqar; Tang, H. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceram. Int. 2020, 46, 23-30.
(46) Xu, J.; Chen, J.; Ao, Y. H.; Wang, P. F. 0D/1D AgI/MoO3 Z-scheme heterojunction photocatalyst: highly efficient visible-light-driven photocatalyst for sulfamethoxazole degradation. Chin. Chem. Lett. 2021, 32, 3226-3230.
(47) Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme he-
terostructure. Acta Phys. -Chim. Sin. 2022, 38, 2111008.
(48) Wang, W. C.; Tao, Y.; Du, L. L.; Zhen, W.; Yan, Z. P.; Chan, W. K.; Lian, Z. C.; Zhu, R. X.; Philps, D. L.; Li, G. S. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal., B-Environ. 2021, 282, 1195688.
(49) Wei, Y.; Chen, L. J.; Chen, H.; Cai, L. R.; Tan, G. P.; Qiu, Y. F.; Xiang, Q. J.; Chen, G.; Lau, T. C.; Robert, M. Highly efficient photocatalytic reduction of CO2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride. Angew. Chem. Int. Ed. 2022, 61, e202116832.
(50) Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87-96.
(51) Shen, R. C.; Lu, X. Y.; Zheng, Q. Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Sol. RRL. 2021, 5, 2100177.
(52) Zhang, X.; Ma, P. J.; Wang, C.; Gan, L. Y.; Chen, X. J.; Zhang, P.; Wang, Y.; Li, H.; Wang, L. H.; Zhou, X. Y.; Zheng, K. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830-842.
(53) Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to single Cu-N3 sites inlaid porous hollow carbonitride spheres for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936-16940.
(54) Hong, X. Y.; Yu, X. H.; Wang, L. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Lattice-matched CoP/CoS2 heterostructure cocatalyst to boost photocatalytic H2 generation. Inorg. Chem. 2021, 60, 12506-12516.