(1) Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.
(2) Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 2020, 56, 89–121.
(3) Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Con-structing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.
(4) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
(5) Xu, J.; Huang, J.; Wang, Z.; Zhu, Y. Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin. J. Catal. 2020, 41, 474–484.
(6) Xia, Y.; Yu, J. Reaction: rational design of highly active photocatalysts for CO2 conversion. Chem. 2020, 6, 1035–1042.
(7) Ren, D.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chin. J. Catal. 2020, 41, 31–40.
(8) Yu, J.; Li, X.; Ong, W. J.; Zhang, L. Design and fabrication of advanced photocatalysts. Acta Phys. Chim. Sin. 2021, 37, 2012043.
(9) Wang, Z.; Hong, J.; Ng, S. F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. J. recent progress of perovskite oxide in emerging photocatalysis landscape: water splitting, CO2 reduction, and N2 fixation. Acta. Phys. Chim. Sin. 2021, 37, 2011033.
(10) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–5225.
(11) Lin, W. C.; Jayakumar, J.; Chang, C. L.; Ting, L. Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y. T.; Liu, J. J.; Wang, W. S.; Lu, C. Y.; Chou, H. H. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 298, 120577.
(12) Wang, R.; Shi, M.; Xu, F.; Qiu, Y.; Zhang, P.; Shen, K.; Zhao, Q.; Yu, J.; Zhang, Y. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.
(13) Chen, B. B.; Liu, S. Q.; Weng, S. X. Template-free polyoxomet-alate-assisted synthesis of Au/ZnO hollow sphere hererostructures for photocatalytic water purification. Chin. J. Struct. Chem. 2018, 37, 924–936.
(14) Wang, Y. Q.; Liu, Y.; Zhang, M. X.; Min, F. F. Electronic, magnetic and photocatalytic properties in (Fe, Ni)-codoped SrTiO3 with and without oxygen vacancies: a first-principles study. Chin. J. Struct. Chem. 2018, 37, 1025–1036.
(15) Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Enhancement of photocatalytic h2-evolution kinetics through the dual cocatalyst activity of Ni2P-NiS-decorated g-C3N4 heterojunctions. Acta Phys. Chim. Sin. 2022, 38, 2110049.
(16) Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 2020, 63, 2153–2188.
(17) Feng, K.; Xue, W.; Hu, X.; Fan, J.; Liu, E. Z-scheme CdSe/ZnSe heterojunction for efficient photocatalytic hydrogen evolution. Colloids Surf. A 2021, 622, 126633.
(18) Liu, D.; Chen, S.; Li, R.; Peng, T. Review of Z-scheme heterojunctions for photocatalytic energy conversion. Acta Phys. Chim. Sin. 2021, 37, 2010017.
(19) Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H.; Li, C.; Zhang, L.; Liu, Z.; Li, Q. Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl. Catal. B Environ. 2012, 111–112, 409–414.
(20) Zhu, Y.; Ren, J.; Zhang, X.; Yang, D. Elemental red phospho-rus-based materials for photocatalytic water purification and hydrogen production. Nanoscale 2020, 12, 13297.
(21) Hu, Z.; Yuan, L.; Liu, Z.; Shen, Z.; Yu, J. C. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angew. Chem. Int. Ed. 2016, 55, 1–7.
(22) Jia, J.; Bai, X.; Zhang, Q.; Hu, X.; Liu, E.; Fan, J. Porous honeycomb-like NiSe2/red phosphorus heteroarchitectures for photocatalytic hydrogen production. Nanoscale 2020, 12, 5636.
(23) Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. 3D Graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802.
(24) Ren, Z.; Li, D.; Xue, Q.; Li, J.; Sun, Y.; Zhang, R.; Zhai, Y.; Liu, Y. Facile fabrication nano-sized red phosphorus with enhanced photocatalytic activity by hydrothermal and ultrasonic method. Catal. Today 2020, 340, 115–120.
(25) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme heterojunction photocatalyst. Chem. 2020, 6, 1543–1559.
(26) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009030.
(27) Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743–752.
(28) Wang, P.; Cao, Y.; Xu, S.; Yu, H. Boosting the H2-evolution performance of TiO2/Au photocatalyst by the facile addition of thiourea molecules. Appl. Surf. Sci. 2020, 532, 147420.
(29) Liu, M. M.; Ying, S. M.; Chen, B. G.; Guo, H. X.; Huang, X. G. Ag@g-C3N4 nanocomposite: an efficient catalyst inducing the reduction of 4-nitrophenol. Chin. J. Struct. Chem. 2021, 40, 1372–1378.
(30) Tong, R.; Ng, K. W.; Wang, X.; Wang, S.; Wang, X.; Pan, H. Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. J. Mater. Chem. A. 2020, 8, 23202.
(31) Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B-Environ. 2021, 291, 120104.
(32) Wu, Y.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X.; Wang, R. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.
(33) Sun, H.; Xue, W.; Fan, J.; Liu, E.; Yu, Q. Preparation of Ni12P5-decorated Cd0.5Zn0.5S for efficient photocatalytic H2 evolution. J. Alloys Compd. 2021, 854, 156951.
(34) Ali, A.; Liu, Y.; Mo, R.; Chen, P.; Shen, P. K. Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 24312–24321.
(35) Fu, Z.; Ma, X.; Xia, B.; Hu, X.; Fan, J.; Liu, E. Efficient photocatalytic H2 evolution over Cu and Cu3P co-modified TiO2 nanosheet. Int. J. Hydrogen Energy 2021, 46, 19373–19384.
(36) Pan, J.; Ou, W.; Li, S.; Chen, Y.; Li, H.; Liu, Y.; Wang, J.; Song, C.; Zheng, Y.; Li, C. Photocatalytic hydrogen production enhancement of Z-Scheme CdS quantum dots/Ni2P/Black Ti3+-TiO2 nanotubes with dual-functional Ni2P nanosheets. Int. J. Hydrogen Energy 2020, 45, 33478–33490.
(37) Ray, A.; Sultana, S.; Paramanik, L.; Parida, K. M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A. 2020, 8, 19196–19245.
(38) Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 2020, 390, 124496.
(39) Yan, X.; Wang, G.; Zhang, Y.; Guo, Q.; Jin, Z. 3D layered nano-flower MoSx anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven. Int. J. Hydrogen Energy 2020, 45, 2578–2592.
(40) Cai, J.; Song, Y.; Zang, Y.; Niu, S.; Wu, Y.; Xie, Y.; Zheng, X.; Liu, Y.; Lin, Y.; Liu, X.; Wang, G.; Qian, Y. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, 8113.
(41) Zhang, Y.; Wang, J.; Shi, X.; Zhang, P.; Ning, W.; Li, W.; Wei, C.; Miao, S. Prolonged-photoresponse-lifetime Ni2P nanocrystalline with highly exposed (001) for efficient photoelectrocatalytic hydrogen evolution. Inorg. Chem. 2021, 60, 16439−16446.
(42) Zhang, J.; Zhou, H.; Liu, Y.; Zhang, J.; Cui, Y.; Li, J.; Lian, J.; Wang, G.; Jiang, Q. Interface engineering of CoP3/Ni2P for boosting the wide pH range water-splitting activity. ACS Appl. Mater. Inter. 2021, 13, 52598–52609.
(43) Sun, Y.; Ren, Z.; Liu, Y.; Fu, R. Facile synthesis of ultrathin red phosphorus nanosheets with excellent photocatalytic performances. Mater. Lett. 2019, 236, 542–546.
(44) Li, C.; Fu, M.; Wang, Y.; Liu, E.; Fan, J.; Hu, X. In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution. Catal. Sci. Technol. 2020, 10, 2221–2230.
(45) Bi, L.; Gao, X.; Zhang, L.; Wang, D.; Zou, X.; Xie, T. Enhanced photocatalytic hydrogen evolution of NiCoP/g-C3N4 with improved separation efficiency and charge transfer efficiency. ChemSusChem. 2018, 11, 276–284.
(46) Liang, L. L.; Song, G.; Liu, Z.; Chen, J. P.; Xie, L. J.; Jia, H.; Kong, Q. Q.; Sun, G. H.; Chen, C. M. Constructing Ni12P5/Ni2P heterostructures to boost interfacial polarization for enhanced microwave absorption performance. ACS Appl. Mater. Inter. 2020, 12, 52208-52220.
(47) Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 842–846.
(48) Sun, X.; Liu, H.; Xu, G.; Bai, J.; Li, C. Embedding Co2P nanoparticles into N&P co-doped carbon fibers for hydrogen evolution reaction and supercapacitor. Int. J. Hydrogen Energy 2021, 46, 1560–1568.
(49) Cao, H.; Wang, T.; Minja, A. C.; Jiang, D.; Du, P. NiCoP nanoparticles anchored on CdS nanorods for enhanced hydrogen production by visible light-driven formic acid dehydrogenation. Int. J. Hydrogen Energy 2021, 46, 32435–32444.
(50) Zhang, Y.; Mollon, G.; Descartes, S. Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: influence of cohesion between particles. Tribol. Int. 2020, 145, 106188.
(51) Bai, J.; Zhou, P.; Xu, P.; Deng, Y.; Zhou, Q. Synergy of dopants and porous structures in graphitic carbon nitride for efficient photocatalytic H2 evolution. Ceram. Int. 2021, 47, 4043–4048.
(52) Chen, Y.; Xu, Y.; Lin, D.; Luo, Y.; Xue, H.; Chen, Q. Insight into superior visible light photocatalytic activity for degradation of dye over corner-truncated cubic Ag2O decorated TiO2 hollow nanofibers. Chin. J. Struct. Chem. 2020, 39, 588–597.
(53) Qin, Z.; Chen, Y.; Huang, Z.; Su, J.; Guo, L. A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. J. Mater. Chem. A. 2017, 5, 19025.
(54) Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131–4137.
(55) Dang, T.; Zhang, G.; Li, Q.; Cao, Z.; Zhang, G.; Duan, H. Ultrathin hetero-nanosheets assembled hollow Ni-Co-P/C for hybrid supercapacitors with enhanced rate capability and cyclic stability. J. Colloid Interface Sci. 2020, 577, 368–378.
(56) Yu, C.; Xu, F.; Luo, L.; Abbo, H. S.; Titinchi, S. J. J.; Shen, P. K.; Tsiakaras, P.; Yin, S. Bimetallic Ni‒Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2019, 317, 191–198.
(57) Ray, C.; Lee, S. C.; Jin, B.; Kundu, A.; Park, J. H.; Jun, S. C. Stacked porous iron-doped nickel cobalt phosphide nanoparticle: an efficient and stable water splitting electrocatalyst. ACS Sustain. Chen. Eng. 2018, 6, 6146–6156.
(58) Wang, Y.; Shen, G.; Zhang, Y.; Pan, L.; Zhang, X.; Zou, J. J. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane. Appl. Catal. B Environ. 2020, 260, 118183.
(59) Qi, L.; Dong, K.; Zeng, T.; Liu, J.; Fan, J.; Hu, X.; Jia, W.; Liu, E. Three-dimensional red phosphorus: a promising photocatalyst with excellent adsorption and reduction performance. Catal. Today 2018, 314, 42–51.
(60) Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Three-dimensional-networked Ni2P/Ni3S2 hetero- nanoflake arrays for highly enhanced electrochemical over-all-water-splitting activity. Nano Energy 2018, 51, 26–36.
(61) Zhang, J.; Liao, H.; Sun, S. Construction of 1D/1D WO3 nano-rod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019–1028.
(62) Zhai, C.; Zhu, M.; Ren, F.; Yao, Z.; Du, Y.; Yang, P. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. J. Hazard. Mater. 2013, 263, 291–298.
(63) Xue, W.; Bai, X.; Tian, J.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Enhanced photocatalytic H2 evolution on ultrathin Cd0.5Zn0.5S nanosheets without a hole scavenger: combined analysis of surface reaction kinetics and energy-level alignment. Chem. Eng. J. 2022, 428, 132608.
(64) Zhang, K.; Fujitsuka, M.; Du, Y.; Majima, T. 2D/2D heterostructured CdS/WS2 with efficient charge separation improving H2 evolution under visible light irradiation. ACS Appl. Mater. Interfaces 2018, 10, 20458−20466.
(65) Liu, H.; Su, P.; Jin, Z.; Ma, Q. Enhanced hydrogen evolution over sea-urchin-structure NiCoP decorated ZnCdS photocatalyst. Catal. Lett. 2020, 150, 2937–2950.
(66) Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A. 2018, 6, 17905.
(67) Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718−7725.
(68) Lai, C.; Liu, X.; Wang, Y.; Cao, C.; Yin, Y.; Yang, H.; Qi, X.; Zhong, S.; Hou, X.; Liang, T. Modulating ternary Mo–Ni–P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting. Electrochim. Acta 2020, 330, 135294.
(69) Shi, L.; Chang, K.; Zhang, H.; Hai, X.; Yang, L.; Wang, T.; Ye, J. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.
(70) Liu, G.; Wang, T.; Zhang, H.; Meng, X.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. Nature-inspired environmental "phosphorylation" boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem. Int. Ed. 2015, 54, 13561–13565.
|