REFERENCES
(1) Liu, B. W.; Jiang, X. M.; Zeng, H. Y.; Guo, G. C. [ABa2Cl][Ga4S8] (A = Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J. Am. Chem. Soc. 2020, 142, 1064110645.
(2) Deckoff-Jones, S.; Wang, Y. X.; Lin, H. T.; Wu, W. Z.; Hu, J. J. Tellurene: a multifunctional material for midinfrared optoelectronics. ACS Photonics 2019, 6, 16321638.
(3) Jia, H. H.; Sun, Y. L.; Zhang, Z. R.; Peng, L. F.; An, T.; Xie, J. Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors. Energy Storage Mater. 2019, 23, 508513.
(4) Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 62256331.
(5) Liu, B. W.; Jiang, X. M.; Li, B. X.; Zeng, H. Y.; Guo, G. C. Li[LiCs2Cl][Ga3S6]: a nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew. Chem.-Int. Edit. 2019, 59, 48564859.
(6) Ye, R.; Liu, B. W.; Jiang, X. M.; Lu, J.; Zeng, H. Y.; Guo, G. C. AMnAs3S6 (A = Cs, Rb): phase-matchable infrared nonlinear optical functional motif [As3S6](3-) obtained via surfactant-thermal method. ACS Appl. Mater. Interfaces 2020, 12, 5395053956.
(7) Yang, L. Q.; Ye, R.; Jiang, X. M.; Liu, B. W.; Zeng, H. Y.; Guo, G. C. Ba13In12Zn7S38 and Ba12In12Zn8Se38: infrared nonlinear optical chalcogenides designed by zinc-induced non-centrosymmetry transformation. J. Mater. Chem. C 2020, 8, 36883693.
(8) Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2][Ga5S10] (A = K, Rb, and Cs). CCS Chem. 2020, 2, 964973.
(9) Wu, K.; Yang, Y.; Gao, L. A review on phase transition and structure-performance relationship of second-order nonlinear optical polymorphs. Coord. Chem. Rev. 2020, 418.
(10) Li, Z.; Zhang, S.; Huang, Z.; Zhao, L. D.; Uykur, E.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. Molecular construction from AgGaS2 to CuZnPS4: defect-induced second harmonic generation enhancement and cosubstitution-driven band gap enlargement. Chem. Mater. 2020, 32, 32883296.
(11) Kutahyali Aslani, C.; Breton, L. S.; Klepov, V. V.; Zur Loye, H. C. A series of Rb4Ln2(P2S6)(PS4)2 (Ln = La, Ce, Pr, Nd, Sm, Gd) rare earth thiophosphates with two distinct thiophosphate units PVS43- and PIV2S64. Dalton Trans. 2021, 50, 16831689.
(12) Rao, R. P.; Chen, H. M.; Adams, S. Stable lithium ion conducting thiophosphate solid electrolytes Li-x(PS4) yX-z (X = Cl, Br, I). Chem. Mater. 2019, 31, 86498662.
(13) Oh, D. Y.; Ha, A. R.; Lee, J. E.; Jung, S. H.; Jeong, G.; Cho, W.; Kim, K. S.; Jung, Y. S. Wet-chemical tuning of Li3-xPS4 (0≤x≤0.3) enabled by dual solvents for all-solid-state lithium-ion batteries. ChemSusChem. 2020, 13, 146151.
(14) Schlem, R.; Till, P.; Weiss, M.; Krauskopf, T.; Culver, S. P.; Zeier, W. G. Ionic conductivity of the NASICON-related thiophosphate Na1+xTi2-xGax(PS4)3. Chem. Eur. J. 2019, 25, 41434148.
(15) Zhu, Z. Y.; Chu, I. H.; Ong, S. P. Li3Y(PS4)2 and Li5PS4Cl2: new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered ab initio molecular dynamics simulations. Chem. Mater. 2017, 29, 24742484.
(16) Francisco, R. H. P.; Tepe, T.; Eckert, H. A study of the system Li–P–Se. J. Solid State Chem. 1993, 107, 452459.
(17) Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Chemistry in molten alkali metal polyselenophosphate fluxes. Influence of flux composition on dimensionality. Layers and chains in APbPSe4, A4Pb(PSe4)2 (A = Rb, Cs), and K4Eu(PSe4)2. Inorg. Chem. 1996, 35, 840844.
(18) Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. Helical polymer (1)/(infinity) P2Se62-: strong second harmonic generation response and phase-change properties of its K and Rb salts. J. Am. Chem. Soc. 2007, 129, 1499615006.
(19) Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 1/(infinity) ZrPSe6-: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 1227012272.
(20) Chondroudis, K.; Kanatzidis, M. G. (1) (infinity) P3Se4-: a novel polyanion in K3RuP5Se10; formation of RuP bonds in a molten polyselenophosphate flux. Angew. Chem. Int. Edit. 1997, 36, 13241326.
(21) Morris, C. D.; Chung, I.; Park, S.; Harrison, C. M.; Clark, D. J.; Jang, J. I.; Kanatzidis, M. G. Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. J. Am. Chem. Soc. 2012, 134, 2073320744.
(22) Banerjee, S.; Szarko, J. M.; Yuhas, B. D.; Malliakas, C. D.; Chen, L. X.; Kanatzidis, M. G. Room temperature light emission from the low-dimensional semiconductors AZrPS6 (A = K, Rb, Cs). J. Am. Chem. Soc. 2010, 132, 53485350.
(23) Chung, I.; Biswas, K.; Song, J. H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos, K. M.; Freeman, A. J.; Kanatzidis, M. G. Rb4Sn5P4Se20: a semimetallic selenophosphate. Angew. Chem. Int. Edit. 2011, 50, 88348838.
(24) Bron, P.; Johansson, S.; Zick, K.; auf der Gunne, J. S.; Dehnen, S.; Roling, B. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 1569415697.
(25) Rigaku Oxford Diffraction. CrysAlisPro Software System, Version v40.67a, Rigaku Corporation, Oxford, UK 2019.
(26) Siemens, SHELXTL Version 5 Reference Manual. Siemens Energy &Automation Inc. Madison, WI 1994.
(27) Korum, G. Reflectance Spectroscopy. Springer, New York 1969.
(28) Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int. J. Quantum Chem. 2000, 77, 895910.
(29) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 2002, 14, 27172744.
(30) Morris, C. D.; Li, H.; Jin, H.; Malliakas, C. D.; Peters, J. A.; Trikalitis, P. N.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. Cs2MIIMIV3Q8 (Q = S, Se, Te): an extensive family of layered semiconductors with diverse band gaps. Chem. Mater. 2013, 25, 33443356.
(31) Hwang, S. J.; Iyer, R. G.; Kanatzidis, M. G. Quaternary selenostannates Na2-xGa2-xSn1+xSe6 and AGaSnSe4 (A = K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe4. J. Solid State Chem. 2004, 177, 36403649.
(32) Wu, P.; Lu, Y. J.; Ibers, J. A. Synthesis and structures of the quaternary sulfides KGaSnS4, KInGeS4, and KGaGeS4. J. Solid State Chem. 1992, 97, 383390.
(33) Jang, J. I.; Park, S.; Harrison, C. M.; Clark, D. J.; Morris, C. D.; Chung, I.; Kanatzidis, M. G. K4GeP4Se12: a case for phase-change nonlinear optical chalcogenide. Opt. Lett. 2013, 38, 13161318.
(34) Hu, X. N.; Xiong, L.; Wu, L. M. Six new members of the A2M(II)M(IV)3Q8 family and their structural relationship. Cryst. Growth Des. 2018, 18, 31243131.
(35) Luo, X. Y.; Liang, F.; Zhou, M. L.; Guo, Y. W.; Li, Z.; Lin, Z. S.; Yao, J. Y.; Wu, Y. C. K2ZnGe3S8: a congruent-melting infrared nonlinear-optical material with a large band gap. Inorg. Chem. 2018, 57, 94469452.
(36) Li, P.; Li, L. H.; Chen, L.; Wu, L. M. Synthesis, structure and theoretical studies of a new ternary non-centrosymmetric beta-LaGaS3. J. Solid State Chem. 2010, 183, 444450.
(37) Luo, Z. Z.; Lin, C. S.; Cui, H. H.; Zhang, W. L.; Zhang, H.; He, Z. Z.; Cheng, W. D. SHG materials SnGa4Q7 (Q = S, Se) appearing with large conversion efficiencies, high damage thresholds, and wide transparencies in the mid-infrared region. Chem. Mater. 2014, 26, 27432749.
(38) Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: CsLu7Q11 and (ClCs6) RE21Q34 (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 45884596.
(39) Wu, Y.; Bensch, W. Syntheses, crystal structures and spectroscopic properties of Ag2Nb[P2S6][S2] and KAg2[PS4]. J. Solid State Chem. 2009, 182, 471478.
|