REFERENCES
(1) Damaraju, V. L.; Damaraju, S.; Young, J. D.; Baldwin, S. A.; Mackey, J.; Sawyer, M. B.; Cass, C. E. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003, 22, 7524–7536.
(2) Seley-Radtke, K. L.; Yates, M. K. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res. 2018, 154, 66–86.
(3) Osada, H. Discovery and applications of nucleoside antibiotics beyond polyoxin. J. Antibiot. 2019, 72, 855–864.
(4) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216.
(5) Wright, A. J. The penicillins. Mayo Clin. Proc. 1999, 74, 290–307.
(6) Vicente, D.; Pérez-Trallero, E. Tetracyclines, sulfonamides, and metronidazole. Enferm. Infecc. Microbiol. Clin. 2010, 28, 122–130.
(7) Pan, C.; Kuranaga, T.; Kakeya, H. Total synthesis of thioamycolamide A via a biomimetic route. Org. Biomol. Chem. 2020, 18, 8366–8370.
(8) Kobayashi, E.; Motoki, K.; Uchida, T.; Fukushima, H.; Koezuka, Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 1995, 7, 529–534.
(9) Zhang, L.; Carthy, C. M.; Zhu, X. Synthesis of a glucosylated alpha-S-galactosylceramide as potential immunostimulant. Carbohydr. Res. 2017, 448, 43–47.
(10) Lian, G.; Zhang, X.; Yu, B. Thioglycosides in carbohydrate research. Carbohydr. Res. 2015, 403, 13–22.
(11) Codée, J. D.; Litjens, R. E.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769–782.
(12) Zhu, F.; Miller, E.; Zhang, S. Q.; Yi, D.; O'Neill, S.; Hong, X.; Walczak, M. A. Stereoretentive C(sp3)-S cross-coupling. J. Am. Chem. Soc. 2018, 140, 18140–18150.
(13) Zhu, M.; Alami, M.; Messaoudi, S. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. Chem. Commun. 2020, 56, 4464–4467.
(14) Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Oliverio, M.; Russo, B. A facile Er(OTf)3-catalyzed synthesis of 2,3-unsaturated O- and S-glycosides. Carbohydr. Res. 2007, 342, 2125–2131.
(15) Stevanović, D.; Pejović, A.; Damljanović, I.; Minić, A.; Bogdanović, G. A.; Vukićević, M.; Radulović, N. S.; Vukićević, R. D. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst. Carbohydr. Res. 2015, 407, 111–121.
(16) Meng, S.; Zhong, W.; Yao, W.; Li, Z. Stereoselective phenylselenoglycosylation of glycals bearing a fused carbonate moiety toward the synthesis of 2-deoxy-β-galactosides and β-mannosides. Org. Lett. 2020, 22, 2981–2986.
(17) Lai, M. N.; Abdulmajed Othman, K.; Yao, H.; Wang, Q. Y.; Feng, Y. K.; Huang, N. Y.; Liu, M. G.; Zou, K. Open-air stereoselective construction of C-aryl glycosides. Org. Lett. 2020, 22, 1144–1148.
(18) Sheldrick, G. M. SHELXL 97, Program for Crystal Structure Determinations. University of Göttingen, Germany 1997.
(19) Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.
(20) Pascua-Maestro, R.; Corraliza-Gomez, M.; Diez-Hermano, S.; Perez-Segurado, C.; Ganfornina, M. D.; Sanchez, D. The MTT-formazan assay: complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochem. 2018, 120, 179–186.
(21) Rose, J. D.; Parker, W. B.; Someya, H.; Shaddix, S. C.; Montgomery, J. A.; Secrist, J. A. Enhancement of nucleoside cytotoxicity through nucleotide prodrugs. J. Med. Chem. 2002, 45, 4505–4512.
(22) MacMillan, J. B.; Guang, X. Z.; Skepper, C. K.; Molinski, T. F. Phorbasides A−E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations. J. Org. Chem. 2008, 73, 3699–3706.
(23) Ogunsina, M.; Samadder, P.; Idowu, T.; Arthur, G.; Schweizer, F. Replacing D-glucosamine with its l-enantiomer in glycosylated antitumor ether lipids (GAELs) retains cytotoxic effects against epithelial cancer cells and cancer stem cells. J. Med. Chem. 2017, 60, 2142–2147.
(24) Paolini, J. P. The bond order-bond length relationship. J. Comput. Chem. 1990, 11, 1160–1163.
(25) Cao, C. Q.; Yan, X. M.; Yang, Q. L.; Luo, H. J.; Huang, N. Y. Synthesis and crystal structure of (Z)-2-methyl-5,6-dihydrobenzo[d]thiazol- 7(4H)-one O-prop-2-yn-1-yl oxime derivatives. Chin. J. Struc. Chem. 2014, 33, 16831688.
(26) Lu, X. F.; Yang, Z.; Huang, N. Y.; He, H. B.; Deng, W. Q.; Zou, K. Synthesis and cytotoxic activities of 2-substituted (25R)-spirostan-1,4,6-triene-3-ones via ring-opening/elimination and “click” strategy. Bioorg. Med. Chem. Lett. 2015, 25, 3726–3729.
(27) Yao, Y.; Xiong, C. P.; Zhong, Y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Intramolecular and Ferrier rearrangement strategy for the construction of C1-β-D-xylopyranosides: synthesis, mechanism and biological activity study. Adv. Syn. Cat. 2019, 361, 1012–1017.
(28) Wang, Y.; Yao, H.; Hua, M.; Jiao, Y.; He, H. B.; Liu, M. G.; Huang, N. Y.; Zou, K. Direct N-glycosylation of amides/amines with glycal donors. J. Org. Chem. 2020, 85, 7485–7493.
(29) West, B. T. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval. Health Prof. 2009, 32, 207228.
|