Efficient Near-infrared Down-conversion Phosphor of Ce3+/Yb3+ Co-doped La3Ga5SiO14 and Its Spectral Structural Modulation
虞万军;龚兴红;秦皓然
a (College of Chemistry, Fuzhou University, Fuzhou 350116, China)
b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
c (Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China)
Efficient Near-infrared Down-conversion Phosphor of Ce3+/Yb3+ Co-doped La3Ga5SiO14 and Its Spectral Structural Modulation
YU Wan-Jun;GONG Xing-Hong;QIN Hao-Ran
a (College of Chemistry, Fuzhou University, Fuzhou 350116, China)
b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
c (Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China)
摘要A series of near-infrared (NIR) down-conversion phosphors of La3Ga5SiO14 (LGS):Ce3+/Yb3+ were synthesized via high-temperature solid-state reaction. Under excitation at 345 nm, the phosphors show strong NIR emission around 978 nm, which matches well with the optimal spectral response of crystalline silicon (c-Si) solar cells. The emission spectra and decay curves were used to demonstrate the energy transfer from Ce3+ to Yb3+. The energy transfer mechanism was discussed in detail, indicating that the energy transfer from Ce3+ to Yb3+ is dominated by a single photon process, and the energy transfer efficiency is up to 51%. In addition, La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3):Ce3+/Yb3+ were also synthesized. The NIR emission intensity of La3Ga2Al3SiO14:1%Ce3+/5%Yb3+ is 4.6 times that of LGS:1%Ce3+/5%Yb3+, and the thermal relaxation was used to explain this phenomenon. The results show that La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3):1%Ce3+/5%Yb3+ phosphors have the potential to increase the conversion efficiency of c-Si solar cells.
Abstract:A series of near-infrared (NIR) down-conversion phosphors of La3Ga5SiO14 (LGS):Ce3+/Yb3+ were synthesized via high-temperature solid-state reaction. Under excitation at 345 nm, the phosphors show strong NIR emission around 978 nm, which matches well with the optimal spectral response of crystalline silicon (c-Si) solar cells. The emission spectra and decay curves were used to demonstrate the energy transfer from Ce3+ to Yb3+. The energy transfer mechanism was discussed in detail, indicating that the energy transfer from Ce3+ to Yb3+ is dominated by a single photon process, and the energy transfer efficiency is up to 51%. In addition, La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3):Ce3+/Yb3+ were also synthesized. The NIR emission intensity of La3Ga2Al3SiO14:1%Ce3+/5%Yb3+ is 4.6 times that of LGS:1%Ce3+/5%Yb3+, and the thermal relaxation was used to explain this phenomenon. The results show that La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3):1%Ce3+/5%Yb3+ phosphors have the potential to increase the conversion efficiency of c-Si solar cells.
基金资助:This research was supported by the Ministry of Science and Technology of the People’s Republic of China (2016YFB0701002), Chinese Academy of Sciences (KFJ-STS-QYZX-069, XDB20000000) and Natural Science Foundation of Fujian Province (2019J01127)
REFERENCES
(1) Ho, W. J.; Shen, Y. T.; Deng, Y. J.; Yeh, C. W.; Sue, R. S. Performance enhancement of planar silicon solar cells through utilization of two luminescent down-shifting Eu-doped phosphor species. Thin Solid Films 2016, 618, 141145.
(2) Yu, D. C.; Rabouw, F. T.; Boon, W. Q.; Kieboom, T.; Ye, S.; Zhang, Q. Y.; Meijerink, A. Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors. Phys. Rev. B 2014, 90, 1651267.
(3) Aarts, L.; Van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4:Er, Yb. J. Appl. Phys. 2009, 106, 0235226.
(4) Strumpel, C.; McCann, M.; Beaucarne, G.; Arkhipov, V.; Slaoui, A.; Svrcek, V.; Del Canizo, C.; Tobias, I. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials. Sol. Energ. Mat. Sol. C 2007, 91, 238249.
(5) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510519.
(6) Zhao, J.; Guo, C. F.; Li, T. Near-infrared down-conversion and energy transfer mechanism of Ce3+–Yb3+ co-doped Ba2Y(BO3)2Cl phosphors. Ecs. J. Solid State Sci. 2016, 5, R3055R3058.
(7) Bouajaj, A.; Belmokhtar, S.; Britel, M. R.; Armellini, C.; Boulard, B.; Belluomo, F.; Di Stefano, A.; Polizzi, S.; Lukowiak, A.; Ferrari, M.; Enrichi, F. Tb3+/Yb3+ codoped silica-hafnia glass and glass-ceramic waveguides to improve the efficiency of photovoltaic solar cells. Opt. Mater. 2016, 52, 6268.
(8) Zhao, F.; Liang, Y.; Lee, J. B.; Hwang, S. J. Applications of rare earth Tb3+–Yb3+ co-doped down-conversion materials for solar cells. Mat. Sci. Eng. B-Adv. 2019, 248, 1144044.
(9) Taniguchi, M. M.; Zanuto, V. S.; Portes, P. N.; Malacarne, L. C.; Astrath, N. G. C.; Marconi, J. D.; Belancon, M. P. Glass engineering to enhance Si solar cells: a case study of Pr3+-Yb3+ codoped tellurite-tungstate as spectral converter. J. Non-Cryst. Solids 2019, 526, 1197176.
(10) Chang, W. X.; Li, L.; Dou, M. W.; Yan, Y. L.; Jiang, S.; Pan, Y.; Cui, M.; Wu, Z. J.; Zhou, X. J. Dual-mode downconversion luminescence with broad near-ultraviolet and blue light excitation in Tm3+/Yb3+ codoped oxy-fluoride glasses for c-Si solar cells. Mater. Res. Bull. 2019, 112, 109114.
(11) Yu, T.; Yu, D. C.; Lin, H. H.; Zhang, Q. Y. Single-band near-infrared quantum cutting of Ho3+–Yb3+ codoped KLu2F7 phosphors by energy clustering. J. Alloy. Compd. 2017, 695, 11541159.
(12) Zhang, Q. H.; Wang, J.; Zhang, G. G.; Su, Q. UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor. J. Mater. Chem. 2009, 19, 70887092.
(13) Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P.; Weng, F. Y. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses. J. Appl. Phys. 2008, 104, 1161054.
(14) Li, J.; Chen, L.; Hao, Z. D.; Zhang, X.; Zhang, L. G.; Luo, Y. S.; Zhang, J. H. Efficient near-infrared down-conversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor. Inorg. Chem. 2015, 54, 48064810.
(15) Liu, Z. J.; Li, J. Y.; Yang, L. Y.; Chen, Q. Q.; Chu, Y. B.; Dai, N. L. Efficient near-infrared quantum cutting in Ce3+–Yb3+ codoped glass for solar photovoltaic. Sol. Energ. Mat. Sol. C 2014, 122, 4650.
(16) Tai, Y. P.; Li, X. Z.; Du, X. G.; Pan, B. L.; Yuan, G. H. Broadband near-infrared quantum cutting by Ce–Yb codoped YAG transparent glass ceramics for silicon solar cells. RSC Adv. 2018, 8, 2326823273.
(17) Ueda, J.; Tanabe, S. Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics. J. Appl. Phys. 2009, 106, 0431016.
(18) Zhao, L.; Han, L. L.; Wang, Y. H. Efficient near-infrared down-conversion in KCaGd(PO4)2:Ce3+, Yb3+. Opt. Mater. Express 2014, 4, 14561464.
(19) Zhou, W. L.; Yang, J.; Wang, J.; Li, Y.; Kuang, X. J.; Tang, J. K.; Liang, H. B. Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+. Opt. Express 2012, 20, A510A518.
(20) Zhang, Q. H.; Ni, H. Y.; Lin, L. T.; Ding, J. M.; Ding, J. H.; Li, X. B. Communication-an intense broadband sensitized near-infrared emitting GdAl3(BO3)4:Ce3+, Yb3+ phosphor. ECS J. Solid State Sci. 2019, 8, R47R49.
(21) Wei, H. W.; Shao, L. M.; Jiao, H.; Jing, X. P. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+. Opt. Mater. 2018, 75, 442447.
(22) Chen, J. D.; Guo, H.; Li, Z. Q.; Zhang, H.; Zhuang, Y. X. Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer. Opt. Mater. 2010, 32, 9981001.
(23) Karunakaran, S. K.; Lou, C. G.; Arumugam, G. M.; Cao, H. H.; Pribat, D. Efficiency improvement of Si solar cells by down-shifting Ce3+ doped and down-conversion Ce3+–Yb3+ co-doped YAG phosphors. Sol. Energy 2019, 188, 4550.
(24) Takeda, H.; Kato, T.; Chani, V. I.; Morikoshi, H.; Shimamura, K.; Fukuda, T. Effect of (Sr, Ba) substitution in La3Ga5SiO14 and La3M0.5Ga5.5O14 (M = Nb5+, Ta5+) crystals on their synthesis, structure and piezoelectricity. J. Alloy. Compd. 1999, 290, 7984.
(25) Reinhardt, A.; Zych, A.; Kohler, I.; Albert, B. Disordered langasites La3Ga5MO14:Eu3+ (M = Si, Ge, Ti) as red-emitting LED phosphors. Dalton. T. 2018, 47, 57035713.
(26) Uda, S.; Wang, S. Q.; Konishi, N.; Inaba, H.; Harada, J. Growth technology of piezoelectric langasite single crystal. J. Cryst. Growth 2005, 275, 251258.
(27) Wang, Q. G.; Su, L. B.; Li, H. J.; Zheng, L. H.; Xu, X. D.; Tang, H. L.; Jiang, D. P.; Wu, F; Xu, J. Spectroscopic properties of Er/Ce-codoped La3Ga5SiO14. Chin. Phys. B 2012, 21, 386392.