Exploration of a Library of Triazolothiadiazines as Potent Plant Growth Promoters: Design, Synthesis, X-ray Diffraction Analysis and Bioactivity Studies
丁其春;蔡艺敏;王司雷;姚培炮;杨儒雅
Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou 363000, China
Exploration of a Library of Triazolothiadiazines as Potent Plant Growth Promoters: Design, Synthesis, X-ray Diffraction Analysis and Bioactivity Studies
A series of novel 3-methyl-6-aryl-7-aroyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines were designed, synthesized and tested for their antiproliferative activity against HepG2 cell lines in vitro by the standard SRB assay and plant growth regulation activities on wheat (amonocotyledon) and radish (adicotyledon). The results indicated all the title compounds exhibited a very weak antiproliferative activity against HepG2 cell lines in vitro unexpectedly, while showed potent plant growth-regulating activities on both wheat and radish. The crystal structure of trans-4d was obtained from X-ray diffraction: C18H13N4OSCl3, Mr = 439.75, monoclinic system, space group P21/n, a = 5.3224(7), b = 14.3578(18), c = 24.442(3) Å, β = 94.180(2)°, V = 1862.8(4) Å3, F(000) = 899, Z = 4, Dc = 1.5679 g/cm3, λ = 0.71073 Å, μ = 0.621 mm 1 and the final R = 0.0382 for 3274 unique reflections with 2851 observed ones (I > 2σ(I)).
A series of novel 3-methyl-6-aryl-7-aroyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines were designed, synthesized and tested for their antiproliferative activity against HepG2 cell lines in vitro by the standard SRB assay and plant growth regulation activities on wheat (amonocotyledon) and radish (adicotyledon). The results indicated all the title compounds exhibited a very weak antiproliferative activity against HepG2 cell lines in vitro unexpectedly, while showed potent plant growth-regulating activities on both wheat and radish. The crystal structure of trans-4d was obtained from X-ray diffraction: C18H13N4OSCl3, Mr = 439.75, monoclinic system, space group P21/n, a = 5.3224(7), b = 14.3578(18), c = 24.442(3) Å, β = 94.180(2)°, V = 1862.8(4) Å3, F(000) = 899, Z = 4, Dc = 1.5679 g/cm3, λ = 0.71073 Å, μ = 0.621 mm 1 and the final R = 0.0382 for 3274 unique reflections with 2851 observed ones (I > 2σ(I)).
基金资助: This work was supported by the Education Research Project of Fujian Province, China (No. JZ180850)
通讯作者:
177426824@qq.com
E-mail: 177426824@qq.com
引用本文:
丁其春;蔡艺敏;王司雷;姚培炮;杨儒雅. Exploration of a Library of Triazolothiadiazines as Potent Plant Growth Promoters: Design, Synthesis, X-ray Diffraction Analysis and Bioactivity Studies[J]. 结构化学, 2021, 40(8): 1098-1106.
DING Qi-Chun;CAI Yi-Min;WANG Si-Lei;YAO Pei-Pao;YANG Ru-Ya . Exploration of a Library of Triazolothiadiazines as Potent Plant Growth Promoters: Design, Synthesis, X-ray Diffraction Analysis and Bioactivity Studies. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40(8): 1098-1106.
REFERENCES
(1) Gavara, L.; Verdirosa, F.; Legru, A.; Mercuri, P. S.; Nauton, L.; Sevaille, L.; Feller, G.; Berthomieu, D.; Sannio, F.; Marcoccia, F.; Tanfoni, S.; Luca, F. D.; Gresh, N.; Galleni, M.; Docquier, J. D.; Hernandez, J. F. 4-(N-Alkyl- and -acyl-amino)-1,2,4-triazole-3-thione analogs as metallo-β-lactamase inhibitors: impact of 4-linker on potency and spectrum of inhibition. Biomol. 2020, 10, 1094–1111.
(2) Salah, K. B. H.; Maingot, M.; Blayo, A. L.; M’Kadmi, C.; Damian, M.; Mary, S.; Cantel, S.; Neasta, J.; Oiry, C.; Péraldi-Roux, S.; Fernandez, G.; Romero, G. G.; Perello, M.; Marie, J.; Banères, J. L.; Fehrentz, J. A.; Denoyelle, S. Development of non-peptidic inverse agonists of the ghrelin receptor (GHSR) based on the 1,2,4-triazole scaffold. J. Med. Chem. 2020, 63, 10796–10815.
(3) Pagniez, F.; Lebouvier, N.; Na, Y. M.; Ourliac-Garnier, I.; Picot, C.; Borgne, M. L.; Pape, P. L. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J. Enzyme Inhib. Med. Chem. 2020, 35, 398–403.
(4) Cheng, Y. N.; Jiang, Z. H.; Sun, L. S.; Su, Z. Y.; Zhang, M. M.; Li, H. L. Synthesis of 1,2,4-triazole benzoyl arylamine derivatives and their high antifungal activities. Eur. J. Med. Chem. 2020, 200, 112463–112473.
(5) Shi, J.; Ding, M. H.; Luo, N.; Wan, S. R.; Li, P. J.; Li, J. H.; Bao, X. P. Design, synthesis, crystal structure, and antimicrobial evaluation of 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole mannich base derivatives against phytopathogenic bacteria and fungi. J. Agric. Food Chem. 2020, 68, 9613–9623.
(6) Stingaci, E.; Zveaghinteva, M.; Pogrebnoia, S.; Lupascu, L.; Valica, V.; Uncu, L.; Smetanscaia, A.; Drumea, M.; Petrou, A.; Ciric, A.; Glamoclija, J.; Sokovic, M.; Kravtsov, V.; Geronikaki, A.; Macaev, F. New vinyl-1,2,4-triazole derivatives as antimicrobial agents: synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett. 2020, 30, 127368–127374.
(7) Ma, W. F.; Chen, P.; Huo, X. S.; Ma, Y. F.; Li, Y. H.; Diao, P. C.; Yang, F.; Zheng, S. Q.; Hu, M. J.; You, W. W.; Zhao, P. L. Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: structure-activity relationship, in vitro and in vivo study. Eur. J. Med. Chem. 2020, 208, 112847–112861.
(8) Li, Z. Q.; Bai, X. G.; Deng, Q.; Zhang, G. N.; Zhou, L.; Liu, Y. S.; Wang, J. X.; Wang, Y. C. Preliminary SAR and biological evaluation of antitubercular triazolothiadiazine derivatives against drug-susceptible and drugresistant Mtb strains. Bioorg. Med. Chem. 2017, 25, 213–220.
(9) Winton, V. J.; Aldrich, C.; Kiessling, L. L. Carboxylate surrogates enhance the antimycobacterial activity of UDP-galactopyranose mutase probes. ACS Infect. Dis. 2016, 2, 538–543.
(10) Khan, I.; Bakht, S. M.; Ibrar, A.; Abbas, S.; Hameed, S.; White, J. M.; Rana, U. A.; Zaib, S.; Shahid, M.; Iqbal, J. Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Adv. 2015, 5, 21249–21267.
(11) Alafeefy, A. M.; Abdel-Aziz, H. A.; Vullo, D.; Al-Tamimi, A. M. S.; Awaad, A. S.; Mohamed, M. A.; Capasso, C.; Supuran, C. T. Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. J. Enzyme Inhib. Med. Chem. 2015, 30, 52–56.
(12) Zhang, B.; Li, Y. H.; Liu, Y.; Chen, Y. R.; Pan, E. S.; You, W. W.; Zhao, P. L. Design, synthesis and biological evaluation of novel 1,2,4-triazolo[3,4-b][1,3,4] thiadiazines bearing furan and thiophene nucleus. Eur. J. Med. Chem. 2015, 103, 335–342.
(13) Ding, Q. C.; Zou, Y. H.; Li, Q. L.; Huang, J. J.; Zhang, L. X.; Yin, H. Y. Synthesis, crystal structure and biological activities of phenyl(6-phenyl-3-p-tolyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)methanone. Chin. J. Struct. Chem. 2020, 39, 1531–1538.
(14) Salam, H. A. A. E.; Yakout, E. S. M. A.; Nawwar, G. A. M.; El-Hashash, M. A.; Mossa, A. T. H. Synthesis of some new 1,2,4-triazoles containing olyl moiety and evaluation of their antimicrobial and antioxidant activities. Monatsh. Chem. 2017, 148, 291–304.
(15) Ahmad, A.; Varshney, H.; Rauf, A.; Sherwani, A.; Owais, M. Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4-triazol-3-thione and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. Arab. J. Chem. 2014, 10, S3347–S3357.
(16) Dabholkar, V. V.; Patil, S. R.; Pandey, R. V. Dimethylformamide catalyzed synthesis of novel heterocycles—their characterization and antimicrobial evaluation. J. Heterocyclic Chem. 2013, 50, 403–407.
(17) Olson, M. E.; Li, M.; Harris, R. S.; Harki, D. A. Small-molecule APOBEC3G DNA cytosine deaminase inhibitors based on a 4-amino-1,2,4-triazole-3-thiol scaffold. ChemMedChem. 2013, 8, 112–117.
(18) Bakavoli, M.; Seyedi, S. M.; Shiri, A.; Saberi, S.; Gholami, M.; Sadeghian, H. Synthesis of new derivatives of pyrimido[5,4-e] [1,2,4] triazolo-
[3,4-b][1,3,4] thiadiazine and their enzyme inhibitory activity assessment on soybean 15-lipoxygenase. J. Chem. Res. 2013, 37, 48–50.
(19) Pundeer, R.; Kiran, V.; Prakash, R.; Sushma; Bhatia, S. C.; Sharma, C.; Aneja, K. R. α, α-Dibromoacetophenones mediated synthesis of some new 7H-7-alkoxy-3-alkyl/phenyl-6-aryl-s-triazolo[3,4-b][1,3,4] thiadiazines and their antimicrobial evaluation. Med. Chem. Res. 2012, 21, 4043–4052.
(20) Iradyan, M. A.; Iradyan, N. S.; Paronikyan, R. V.; Stepanyan, G. M. Synthesis and biological activity of substituted
6-alkyl(6H)-3-phenyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Pharm. Chem. J. 2010, 44, 413–417.
(21) Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Cryst. 2015, A71, 59–75.
(22) Zhou, S. N.; Zhang, L. X.; Wu, X. H.; Tian, Y. J.; Liu, L. Q.; Pan, B.; Luo, Y. F.; Shi, M. R. Synthesis and plant growth regulating effects of novel 6-aryl-3-(5-hydroxypentyl)-7-1,2,4-trazole[3,4-b][1,3,4]thiadiazines. Chin. J. Synth. Chem. 2019, 27, 19–24.
(23) Ding, Q. C.; Zhang, L. X.; Zhang, H. L. Synthesis and biological activities of some novel triazolothiadiazines and Schiff bases derived from 4-amino-3-(4-hydroxyphenyl)-1H-1,2,4-triazole-5(4H)-thione. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 567–572.
(24) Zhou, S. N.; Zhang, L. X.; Jin, J. Y.; Zhang, A. J.; Lei, X. X.; Lin, J. S.; He, J. W.; Zhang, H. L. Synthesis and biological activities of some novel triazolothiadiazines and Schiff bases derived from 1,2,4-triazole. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182, 419–432.
(25) Jin, J. Y.; Zhang, L. X.; Chen, X. X.; Zhang, A. J.; Zhang, H. L. Syntheses and biological activities of
6-aryl-3-(3-hydroxy-propyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines. Molecules 2007, 12, 297–303.