(1) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
(2) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840; Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Edit. 2009, 48, 2334–2338; Che, W.; Li, G.; Liu, X.; Shao, K.; Zhu, D.; Su, Z.; Bryce, M. R. Selective sensing of 2,4,6-trinitrophenol (TNP) in aqueous media with “aggregation-induced emission enhancement” (AIEE)-active iridium(III) complexes. Chem. Commun. 2018, 54, 1730–1733; Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.
(3) Jiang, H. L.; Feng, D.; Wang, K.; Gu, Z. Y.; Wei, Z.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934–13938; Li, P.; Yin, X. M.; Gao, L. L.; Yang, S. L.; Sui, Q.; Gong, T.; Gao, E. Q. Modulating excitation energy of luminescent metal-organic frameworks for detection of Cr(VI) in water. ACS. Appl. Nano. Mater. 2019, 2, 4646–4654.
(4) Roy, I.; Bobbala, S.; Zhou, J.; Nguyen, M. T.; Nalluri, S. K. M.; Wu, Y.; Ferris, D. P.; Scott, E. A.; Wasielewski, M. R.; Stoddart, J. F. ExTzBox: a glowing cyclophane for live-cell imaging. J. Am. Chem. Soc. 2018, 140, 7206–7212.
(5) Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473.
(6) Rizzuto, F. J.; Faust, T. B.; Chan, B.; Hua, C.; D'Alessandro, D. M.; Kepert, C. J. Experimental and computational studies of a multi-electron donor-acceptor ligand containing the thiazolo[5,4-d]thiazole core and its incorporation into a metal-organic framework. Chem-Eur. J. 2014, 20, 17597–17605.
(7) Wang, K.; Huang, S.; Zhang, Y.; Zhao, S.; Zhang, H.; Wang, Y. Multicolor fluorescence and electroluminescence of an ICT-type organic solid tuned by modulating the accepting nature of the central core. Chem. Sci. 2013, 4, 3288–3293.
(8) Luo, J.; Hu, B.; Debruler, C.; Liu, T. L. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem. Int. Edit. 2018, 57, 231–235.
(9) Zhai, Z. W.; Yang, S. H.; Cao, M.; Li, L. K.; Du, C. X.; Zang, S. Q. Rational design of three two-fold interpenetrated metal-organic frameworks: luminescent Zn/Cd-metal-organic frameworks for detection of 2,4,6-trinitrophenol and nitrofurazone in the aqueous phase. Cryst. Grow. Th. Des. 2018, 18, 7173–7182.
(10) Zhai, Z. W.; Yang, S. H.; Luo, P.; Li, L. K.; Du, C. X.; Zang, S. Q. Dicarboxylate-induced structural diversity of luminescent Zn(II)/Cd(II) metal-organic frameworks based on the 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole ligand. Eur. J. Inorg. Chem. 2019, 2019, 2725–2734.
(11) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122;
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.
(12) Hagrman, D.; Haushalter, R. C.; Zubieta, J. Three-dimensional organic/inorganic hybrid materials constructed from one-dimensional copper diamine coordination polymers linked by bridging oxoanion tetrahedra: [Cu(dpe)(MoO4)] and [Cu(dpe)(SO4)(H2O)] (dpe = 1,2-trans-(4-pyridyl)ethene). Chem. Mater. 1998, 10, 361–365.
(13) Paul, A. K.; Madras, G.; Natarajan, S. Synthesis, structure, transformation studies and catalytic properties of open-framework cadmium thiosulfate compounds. Dalton Trans. 2010, 39, 2263–2279; Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. New architectures from the self-assembly of MIISO4 salts with bis(4-pyridyl) ligands. The first case of polycatenation involving three distinct sets of 2D polymeric (4,4)-layers parallel to a common axis. CrystEngComm. 2003, 5, 190–199; Xu, Y.; Bi, W. H.; Li, X.; Sun, D. F.; Cao, R.; Hong, M. C. A three-dimensional coordination framework containing μ4-sulfate anions [Cd(μ4-SO4)(bpy)]n (bpy = 4,4΄-bipyridine). Inorg. Chem. Commun. 2003, 6, 495–497.
(14) Ding, B.; Hua, C.; Kepert, C. J.; D'Alessandro, D. M. Influence of structure-activity relationships on through-space intervalence charge transfer in metal-organic frameworks with cofacial redox-active units. Chem. Sci. 2019, 10, 1392–1400.
(15) Peng, Q.; Peng, J. B.; Kang, E. T.; Neoh, K. G.; Cao, Y. Synthesis and electroluminescent properties of copolymers based on fluorene and 2,5-di(2-hexyloxyphenyl)thiazolothiazole. Macromolecules 2005, 38, 7292–7298; Knighton, R. C.; Hallett, A. J.; Kariuki, B. M.; Pope, S. J. A. A one-step synthesis towards new ligands based on aryl-functionalised thiazolo[5,4-d]thiazole chromophores. Tetrahedron. Lett. 2010, 51, 5419–5422; Zhang, Z.; Chen, Y. A.; Hung, W. Y.; Tang, W. F.; Hsu, Y. H.; Chen, C. L.; Meng, F. Y.; Chou, P. T. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5,4-d]thiazole ESIPT
system. Chem. Mater. 2016, 28, 8815–8824.
|