REFERENCES
(1) Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2d photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 65926604.
(2) Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 39624179.
(3) Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 950949.
(4) Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res. 2006, 45, 25582568.
(5) Nakamura, H. Recent organic pollution and its biosensing methods. Anal. Methods 2010, 2, 430444.
(6) Kemp, K. C.; Seema, H.; Saleh, M.; Le, N. H.; Mahesh, K.; Chandra, V.; Kim, K. S. Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 2013, 5, 314971.
(7) Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 24812498.
(8) Yamashitaa, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 10, 221227.
(9) White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 1288812935.
(10) Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 68269.
(11) Tan, H.; Zhao, Z.; Zhu, W. B.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrtiO3. ACS Appl. Mater. Inter. 2014, 6, 1918419190.
(12) Huang, B.; Gillen, R.; Robertson, J. Study of CeO2 and its native defects by density functional theory with repulsive potential. J. Phys. Chem. C 2014, 118, 2424824256.
(13) Ling, Y. C.; Wang, G. M.; Reddy, J.; Wang, C. C.; Zhang, J. Z.; Li, Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 2012, 124, 41504155.
(14) Ye, S.; Wang, R.; Wu, M. Z.; Yuan, Y. P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 1527.
(15) Lakhi, K. S.; Park, D. H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J. H.; Vinu, A. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72101.
(16) Wang, Y. L.; Tian, Y.; Yan, L.; Su, Z. M. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 2018, 122, 77127719.
(17) Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 1416114168.
(18) Li, Y. H.; Ho, W. K.; Lv, K. L.; Zhu, B. C.; Lee, S. C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380389.
(19) Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J. Y.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “Holy Grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 20802147.
(20) Gu, Z. Y.; Cui, Z. T.; Wang, Z. J.; Qin, K. S.; Asakura, Y.; Hasegawa, T.; Tsukuda, S.; Hongo, K.; Maezono, R.; Yin, S. Carbon vacancies and hydroxyls in graphitic carbon nitride: promoted photocatalytic NO removal activity and mechanism. Appl. Catal. B-Environ. 2020, 9, 11937611.
(21) Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72123.
(22) Wang, Y. L.; Zhang, Y.; Li. B. Z.; Luo, K.; Shi, K. Y.; Zhang, L.; Li, Y.; Yu T. J.; Hu, W. T.; Xie C. L.; Wu, Y. J.; Su, L.; Dong, X.; Zhao, Z. S.; Yang, G. Q.; Restacked Melon as highly-efficient photocatalyst. Nano Energy 2020, 77, 10512410.
(23) Yang, P. J.; Zhuzhang, H. Y; Wang, R. R.; Lin, W.; Wang, X. C. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion. Angew. Chem. Int. Ed. 2019, 58, 11341137.
(24) Shen, M.; Zhang, L. X.; Wang, M.; Tian, J. J.; Jin, X. X.; Guo, L. M.; Wang, L. Z.; Shi, J. L. Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing. J. Mater. Chem. A 2019, 7, 15561563.
(25) Kresse. G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1995, 54, 1116911186.
(26) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 1650.
(27) Blochl, P. E. A projector augmented-wave method. Phys. Rev. B 1994, 50, 1795317979.
(28) Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1998, 59, 17591775.
(29) Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(30) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 17871799.
(31) Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 65796591.
(32) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 1788617892.
(33) Zhang, F. L.; Yi, J.; Peng, W.; Radjenovic, P. M.; Zhang, H.; Tian, Z. Q.; Li, J. F. Elucidating molecule-plasmon interactions in nanocavities with 2 nm spatial resolution and at the single-molecule level. Angew. Chem. Int. Ed. 2019, 58, 1213312137.
(34) Shi, H. N.; Long, S.; Hou, J. G.; Ye, L.; Sun, Y. W.; Ni, W. J.; Song, C. S.; Li, K. Y.; Gurzadyan, G. G.; Guo, X. W. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visible-light-driven CO2 reduction activity. Chem. Eur. J. 2019, 25, 50285035.
(35) Xue, J. W.; Fujitsuka, M.; Majima, T. Shallow trap state-induced efficient electron transfer at the interface of heterojunction photocatalysts: the crucial role of vacancy defects. ACS Appl. Mater. Inter. 2019, 11, 408607.
(36) Yang, P. J.; Wang, L.; ZhuZhang, H. Y.; Wang, R.; Titirici, M. M.; Wang, X. X. Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. Appl. Catal. B-Environ. 2019, 256, 1177948.
(37) Lu, S.; Li, C.; Li, H. H.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T. The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C3N4 by first-principles study. Appl. Surf. Sci. 2017, 392, 966974.
(38) Azofra, L. M.; MacFarlane, D. R.; Sun, C. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion. Phys. Chem. Chem. Phys. 2016, 18, 1850714.
(39) Esrafili, M. D.; Sharifi, F.; Dinparast, L. Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: a comparative DFT study. J. Mol. Graph. Model. 2017, 77, 143152.
(40) Wu, H. Z.; Bandaru, S.; Huang, X. L.; Liu, J.; Li, L. L.; Wang, Z. Theoretical insight into the mechanism of photoreduction of CO2 to CO by graphitic carbon nitride. Phys. Chem. Chem. Phys. 2019, 21, 15141520.
(41) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Gang, X.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 7680.
(42) Tong, Y. W.; Wei, C. G.; Li, Y.; Zhang, Y. F.; Lin, W. Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H2O2. Phys. Chem. Chem. Phys. 2020, 22, 2109921107.
|