REFERENCES
(1) McBee, E. T.; Hatton, R. E. Production of hexachlorobutadiene. Ind. Eng. Chem. 1949, 41, 809812.
(2) Dharmarathne, N. K.; Mackie, J. C.; Kennedy, E. M.; Stockenhuber, M. Mechanism and rate of thermal decomposition of hexachlorocyclopentadiene and its importance in PCDD/F formation from the combustion of cyclodiene pesticides. J. Phys. Chem. A 2017, 121, 58715883.
(3) Robitschek, P.; Bean, C. T. Flame-resistant polyesters from hexachlorocyclopentadiene. Ind. Eng. Chem. 1954, 46, 16281632.
(4) Zhang, C.; Wang, D.; Song, J.; Li, C.; Mo, Y. Bonding of Diels-Alder reactions of substituted 2-borabicyclo(1.1.0)but-1(3)-enes: a theoretical study. Theor. Chem. Acc. 2019, 138, 1065.
(5) Lu, P. Y.; Metcalf, R. L.; Hirwe, A. S.; Williams, J. W. Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordene, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J. Agric. Food Chem. 1975, 23, 967973.
(6) Podowski, A. A.; Sclove, S. L.; Pilipowicz, A.; Khan, M. A. Q. Biotransformation and disposition of hexachlorocyclopentadiene in fish. Arch. Environ. Contam. Toxicol. 1991, 20, 488496.
(7) Rand, G. M.; Nees, P. O.; Calo, C. J.; Alexander, D. J.; Clark, G. C. Effects of inhalation exposure to hexachlorocyclopentadiene on rats and monkeys. J. Toxicol. Env. Health Part A 1982, 9, 743760.
(8) Abdo, K. M.; Montgomery, C. A.; Kluwe, W. M.; Farnell, D. R.; Prejean, J. D. Toxicity of hexachlorocyclopentadiene: subchronic (13-week) administration by gavage to F344 rats and B6C3F1, mice. J. Appl. Toxicol. 1984, 4, 7581.
(9) Spehar, R. L.; Veith, G. D.; DeFoe, D. L.; Bergstedt, B. V. Toxicity and bioaccumulation of hexachlorocyclopentadiene, hexachloronorbornadiene and heptachloronorbornene in larval and early juvenile fathead minnows,Pimephales promelas. Bull. Environ. Contam. Toxicol. 1979, 21, 576583.
(10) Dharmarathne, N. K.; Mackie, J. C.; Lucas, J.; Kennedy, E. M.; Stockenhuber, M. Mechanisms of thermal decomposition of cyclodiene pesticides, identification and possible mitigation of their toxic products. Proc. Combust. Inst. 2019, 37, 11431150.
(11) Sun, X.; Zhang, C.; Zhao, Y.; Bai, J.; Zhang, Q.; Wang, W. Atmospheric chemical reactions of 2,3,7,8-tetrachlorinated dibenzofuran initiated by an OH radical: mechanism and kinetics study. Environ. Sci. Technol. 2012, 46, 81488155.
(12) Lin, L. F.; Lee, W. J.; Li, H. W.; Wang, M. S.; Chang-Chien, G. P. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 2007, 68, 16421649.
(13) Yan, M.; Qi, Z.; Yang, J.; Li, X.; Ren, J.; Xu, Z. Effect of ammonium sulfate and urea on PCDD/F formation from active carbon and possible mechanism of inhibition. J. Environ, Sci. 2014, 26, 22772282.
(14) Nubbe, M. E.; Adams, V. D.; Moore, W. M. The direct and sensitized photo-oxidation of hexachlorocyclopentadiene. Water Res. 1995, 29, 12871293.
(15) Wolfe, N. L.; Zepp, R. G.; Schlotzhauer, P.; Sink, M. Transformation pathways of hexachlorocyclopentadiene in the aquatic environment. Chemosphere 1982, 11, 91101.
(16) Stemmler, E. A.; Hites, R. A. Methane enhanced negative ion mass spectra of hexachlorocyclopentadiene derivatives. Anal Chem. 1985, 57, 684692.
(17) Shi, J.; Liu, H.; Sun, L.; Hou, H.; Xu, Y.; Wang, Z. Theoretical study on hydrophilicity and thermodynamic properties of polyfluorinated dibenzofurans. Chemosphere 2011, 84, 296304.
(18) Zhou, Q.; Sun, X.; Gao, R.; Hu, J. Mechanism and kinetic properties for OH-initiated atmospheric degradation of the organophosphorus pesticide diazinon. Atmos. Environ. 2011, 45, 31413148.
(19) Gao, R.; Sun, X.; Yu, W.; Zhang, Q.; Wang, W. Mechanism and rate constants for complete series reactions of 19 fluorophenols with atomic H. J. Environ. Sci. 2014, 26, 154159.
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT 2009.
(21) Wang, Y.; Verma, P.; Jin, X.; Truhlar, D. G.; He, X. Revised M06 density functional for main-group and transition-metal chemistry. Proc. Natl. Acad. Sci. U.S.A 2018, 115, 1025710262.
(22) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215241.
(23) Li, C.; Xie, H. B.; Chen, J.; Yang, X.; Zhang, Y.; Qiao, X. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination. Environ. Sci. Technol. 2014, 48, 1380813816.
(24) Zheng, J.; Frisch, M. J. Efficient geometry minimization and transition structure optimization using interpolated potential energy surfaces and iteratively updated hessians. J. Chem. Theory Comput. 2017, 13, 64246432.
(25) Hratchian, H. P.; Schlegel, H. B. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 2005, 1, 6169.
(26) Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic reaction coordinate: calculation, bifurcation, and automated search. Int. J. Quantum Chem. 2015, 115, 258269.
(27) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 1996, 100, 1277112800.
(28) Pechukas, P. Transition state theory. Annu. Rev. Phys. Chem. 1981, 32, 159177.
(29) Berndt, T.; Böge, O. Atmospheric reaction of OH radicals with 1,3-butadiene and 4-hydroxy-2-butenal. J. Phys. Chem. A 2007, 111, 1209912105.
(30) Cheng, G. J.; Zhang, X.; Chung, L. W.; Xu, L.; Wu, Y. D. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J. Am. Chem. Soc. 2015, 137, 17061725.
(31) Truong, T. N. Reaction class transition state theory: hydrogen abstraction reactions by hydrogen atoms as test cases. J. Chem. Phys. 2000, 113, 49574964.
(32) Canneaux, S.; Bohr, F.; Henon, E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J. Comput. Chem. 2014, 35, 8293.
(33) Lan, Y.; Wheeler, S. E.; Houk, K. N. Extraordinary difference in reactivity of ozone (OOO) and sulfur dioxide (OSO): a theoretical study. J. Chem. Theory Comput. 2011, 7, 21042111.
(34) Wadt, W. R.; Goddard, W. A. Electronic structure of the Criegee intermediate. Ramifications for the mechanism of ozonolysis. J. Am. Chem. Soc. 1975, 97, 30043021.
(35) Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 2015, 115, 1305113092.
(36) Tsuji, M.; Kawahara, T.; Uto, K.; Hayashi, J.; Tsuji, T. Photochemical removal of NO2 in air at atmospheric pressure using side-on type 172-nm Xe2 excimer lamp. Int. J. Environ. Sci. Technol. 2019, 16, 56855694.
(37) Zelenov, V. V.; Aparina, E. V.; Kozlovskiy, V. I.; Sulimenkov, I. V.; Nosyrev, A. E. Kinetics of NO3 uptake on pyrene as a representative organic aerosols. Russ. J. Phys. Chem. B 2018, 12, 343351.
(38) Li, W.; Chen, Y.; Tong, S.; Guo, Y.; Zhang, Y.; Ge, M. Kinetic study of the gas-phase reaction of O3 with three unsaturated alcohols. J. Environ. Sci. 2018, 71, 292299.
(39) Logan, J. A. Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. Journal of Geophysical Research: Atmos 1985, 90, 1046310482.
(40) Lawrence, M. G.; Jöckel, P.; von Kuhlmann, R. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 2001, 1, 3749.
(41) Holland, F.; Hofzumahaus, A.; Schäfer, J.; Kraus, A.; Pätz, H. W. Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. J. Geophys. Res. Atmos. 2003, 108, 223.
(42) Vrekoussis, M.; Kanakidou, M.; Mihalopoulos, N.; Crutzen, P. J.; Lelieveld, J.; Perner, D.; Berresheim, H.; Baboukas, E. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. Atmos. Chem. Phys. 2004, 4, 169182.
(43) Horie, O.; Moortgat, G. K. Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes. Atmos. Environ. 1991, 25, 18811896.
(44) Taatjes, C. A.; Meloni, G.; Selby, T. M.; Trevitt, A. J.; Osborn, D. L.; Percival, C. J.; Shallcross, D. E. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 2008, 130, 1188311885.
(45) Jiang, L.; Xu, Y. S.; Ding, A. Z. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study. J. Phys. Chem. A 2010, 114, 1245212461.
(46) Long, B.; Bao, J. L.; Truhlar, D. G. Atmospheric chemistry of Criegee intermediates: unimolecular reactions and reactions with water. J. Am. Chem. Soc. 2016, 138, 1440914422.
(47) Richter, A.; Burrows, J. P. Tropospheric NO2 from GOME measurements. Adv. Space Res. 2002, 29, 16731683.
|