Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products
邹庆;高秋爽;姚芃;姚其正;张骥
a (Department of Physical Chemistry, China Pharmaceutical University, Nanjing 210009, China)
b (State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China)
c (School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China)
Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products
ZOU Qing;GAO Qiu-Shuang;YAO Peng;YAO Qi-Zheng;ZHANG Ji
a (Department of Physical Chemistry, China Pharmaceutical University, Nanjing 210009, China)
b (State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China)
c (School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China)
Matrix metalloproteinase-13 (MMP-13) has been considered as a promising therapeutic target for osteoarthritis. In this work, the experimental crystal structures of five MMP-13-ligand complexes are used to build the multiple structure-based pharmacophore model of MMP-13 inhibitors. The reliability of pharmacophore model is validated using a decoy set. The pharmacophore model contains four chemical features: two hydrogen bond acceptor (HBA), one hydrophobic (HY) feature, and one ring aromatic (RA) feature. Particularly, the HY feature is found to orient the MMP-13 inhibitors deep into the S1' pocket of MMP-13 to produce selective inhibition. By carrying out the screening of pharmacophore model and subsequent molecular docking, the four non-zinc-chelating selective MMP-13 inhibitors of natural products (NP-015973, NP-000814, STOCK1N-24933, and STOCK1N-69443) are identified. It is found that the binding modes of MMP-13 with our screened four natural products are very similar to the reported experimental binding mode of MMP-13 with the most active inhibitor (GG12003, IC50: 0.67 nM), and each of them involves the interactions of a ligand with the three amino acid residues Thr226, Lys119, and His201 of MMP-13 receptor. This shows that our modeling results are in good agreement with the relevant experimental results, which strongly supports our screened MMP-13 inhibitors of natural products. These screened natural products may be used as the lead compounds of MMP-13 inhibitors in the future studies of structural modifications.
Matrix metalloproteinase-13 (MMP-13) has been considered as a promising therapeutic target for osteoarthritis. In this work, the experimental crystal structures of five MMP-13-ligand complexes are used to build the multiple structure-based pharmacophore model of MMP-13 inhibitors. The reliability of pharmacophore model is validated using a decoy set. The pharmacophore model contains four chemical features: two hydrogen bond acceptor (HBA), one hydrophobic (HY) feature, and one ring aromatic (RA) feature. Particularly, the HY feature is found to orient the MMP-13 inhibitors deep into the S1' pocket of MMP-13 to produce selective inhibition. By carrying out the screening of pharmacophore model and subsequent molecular docking, the four non-zinc-chelating selective MMP-13 inhibitors of natural products (NP-015973, NP-000814, STOCK1N-24933, and STOCK1N-69443) are identified. It is found that the binding modes of MMP-13 with our screened four natural products are very similar to the reported experimental binding mode of MMP-13 with the most active inhibitor (GG12003, IC50: 0.67 nM), and each of them involves the interactions of a ligand with the three amino acid residues Thr226, Lys119, and His201 of MMP-13 receptor. This shows that our modeling results are in good agreement with the relevant experimental results, which strongly supports our screened MMP-13 inhibitors of natural products. These screened natural products may be used as the lead compounds of MMP-13 inhibitors in the future studies of structural modifications.
邹庆;高秋爽;姚芃;姚其正;张骥. Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products[J]. 结构化学, 2020, 39(11): 1990-2000.
ZOU Qing;GAO Qiu-Shuang;YAO Peng;YAO Qi-Zheng;ZHANG Ji. Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39(11): 1990-2000.
REFERENCES
(1) Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 2003, 200, 448464.
(2) Murphy, G.; Knauper, V.; Atkinson, S.; Butler, G.; English, W.; Hutton, M. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002, 4, S39S49.
(3) Conrozier, T.; Ferrand, F.; Poole, A. R.; Verret, C. Differences in biomarkers of type II collagen in atrophic and hypertrophic osteoarthritis of the hip: implications for the differing pathobiologies. Osteoarthr Cartilage. 2007, 15, 462467.
(4) Buckwalter, J. A.; Martin, J. A. Osteoarthritis. Adv. Drug Delivery Rev. 2006, 58, 150167.
(5) Neuhold, L. A.; Killar, L.; Zhao, W.; Sung, M. A.; Warner, L.; Kulik, J.; Turner, J. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 2001, 107, 3544.
(6) Stickens, D.; Behonick, D. J.; Ortega, N.; Heyer, B.; Hartenstein, B.; Yu, Y.; Fosang, A. J.; Angel, P.; Werb, Z. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004, 131, 58835895.
(7) Tallant, C.; Marrero, A. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim. Biophys. Acta 2010, 1803, 2028.
(8) Renkiewicz, R.; Qiu, L.; Lesch, C.; Sun, X.; Devalaraja, R.; Cody, T.; Kaldjian, E.; Welgus, H.; Baragi, V. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 2003, 48, 17421749.
(9) Fabre, B.; Ramos, A. Targeting matrix metalloproteinases: exploring the dynamics of the S1' pocket in the design of selective, small molecule inhibitors. J. Med. Chem. 2014, 57, 1020510219.
(10) Engel, C. K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K. U.; Wendt, K. U. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol. 2014, 12, 181189.
(11) Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man, C. F.; Bornemeier, D. A.; Banotai, C. A. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 2007, 282, 2778127791.
(12) Heim-Riether, A.; Taylor, S. J.; Liang, S.; Gao, D. A. Improving potency and selectivity of a new class of non-Zn-chelating MMP-13 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 53215324.
(13) Choi, J. Y.; Fuerst, R.; Knapinska, A. M. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem. 2017, 60, 58165825.
(14) Gao, D. A.; Xiong, Z.; Heim-Riether, A.; Amodeo, L.; August, E. M.; Cao, X.; Ciccarelli, L. SAR studies of non-zinc-chelating MMP-13 inhibitors: improving selectivity and metabolic stability. Bioorg. Med. Chem. Lett. 2010, 20, 50395043.
(15) Gege, C.; Bao, B.; Bluhm, H.; Boer, J.; Gallagher, B. M.; Korniski, B.; Powers, T. S.; Steeneck, C. Discovery and evaluation of a non-zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J. Med. Chem. 2012, 55, 709716.
(16) Li, J. J.; Nahra, J.; Johnson, A. R.; Bunker, A.; O’Brien, P.; Yue, W. S.; Ortwine, D. F.; Man, C. F.; Baragi, V. Quinazolinones and pyrido [3,4-d] pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2008, 51, 835841.
(17) Taylor, S. J.; Abeywardane, A.; Liang, S.; Muegge, I.; Padyana, A.; Xiong, Z.; Hill-Drzewi, M.; Farmer, B. Fragment based discovery of indole inhibitors of matrix metalloproteinase-13. J. Med. Chem. 2011, 54, 81748187.
(18) Savi, C. D.; Morley, A. D.; Ting, A.; Nash, I.; Karabelas, K.; Wood, C. M.; James, M.; Norris, S. J.; Karoutchi, G.; Rankine, N. Selective non zinc binding inhibitors of MMP13. Bioorg. Med. Chem. Lett. 2011, 21, 42154219.
(19) Spicer, T. P.; Jiang, J.; Taylor, A. B.; Choi, J. Y.; Hart, P. J.; Roush, W. R.; Field, G. B.; Hodder, P. S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrixmetalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem. 2014, 57, 95989611.
(20) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. New horizons for old drugs and drug leads. J. Nat. Prod. 2014, 77, 703723.
(21) Cragg, G. M.; Grothaus, P. G.; Newman, D. Impact of natural products on developing new anti-cancer agents. J. Chem. Rev. 2009, 109, 30123043.
(22) Yang, S. Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today 2010, 15, 444450.
(23) Gagnon, J. K.; Law, S. M.; Brooks, C. L. Flexible CDOCKER: development and application of a pseudo-explicit structure-based docking method within CHARMM. J. Comput. Chem. 2016, 37, 753762.
(24) Discovery Studio, Version 3.0; Accelrys Inc: San Diego 2010.
(25) Hamza, A.; Wei, N. N.; Zhan, C. G. Ligand-based virtual screening approach using a new scoring function. J. Chem. Inf. Model 2012, 52, 963974.
(26) Triballeau, N.; Acher, F.; Brabet, I. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach, application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem. 2005, 48, 25342547.
(27) Hein, M.; Zilian, D. Docking compared to 3D pharmacophores: the scoring function challenge. Drug Discovery Today: Technol. 2011, 7, e229e236.
(28) Wang, Y. J.; Yang, L. M.; Hou, J. Y.; Zou, Q.; Gao, Q.; Yao, W. H.; Yao, Q. Z.; Zhang, J. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J. Biomol. Struct. Dyn. 2019, 37, 649670.
(29) Hou, J. Y.; Zou, Q.; Wang, Y. J.; Gao, Q.; Yao, W. H.; Yao, Q. Z.; Zhang, J. Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation. J. Biomol. Struct. Dyn. 2019, 37, 31353149.
(30) Li, J.; Zhao, F.; Li, M. Z.; Chen, L. X.; Qiu, F. Diarylheptanoids from the Rhizomes of Curcuma kwangsiensis. J. Nat. Prod. 2010, 73, 16671671.
(31) Kim, S. B.; Liu, Q.; Ahn, J. H.; Jo, Y. H.; Turk, A.; Hong, I. P.; Han, S. M.; Hwang, Y. B.; Lee, M. K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorg. Chem. 2018, 81, 127133.