REFERENCES
(1) Wang, R.; Chen, H.; Xiao, Y.; Hadar, I.; Bu, K.; Zhang, X.; Pan, J.; Gu, Y.; Guo, Z.; Huang, F.; Kanatzidis, M. G. Kx[Bi4–xMnxS6], design of a highly selective ion exchange material and direct gap 2D semiconductor. J. Am. Chem. Soc. 2019, 141, 16903–16914.
(2) Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y.; Qiu, Z. Q.; Cava, R. J.; Louie, S. G.; Xia, J.; Zhang, X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.
(3) Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 2017, 7, 4571–4580.
(4) Malliakas, C. D.; Chung, D. Y.; Claus, H.; Kanatzidis, M. G. Superconductivity in the narrow-gap semiconductor CsBi4Te6. J. Am. Chem. Soc. 2013, 135, 14540–14543.
(5) Lin, H.; Tan, G. J.; Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G. Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 2016, 55, 11431–11436.
(6) Lin, H.; Chen, L.; Zhou, L. J.; Wu, L. M. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AXII4XIII5Se12. J. Am. Chem. Soc. 2013, 135, 12914–12921.
(7) Ohtani, T.; Honjo, H.; Wada, H. Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln = lanthanides). Mater. Res. Bull. 1987, 22, 829–840.
(8) Keane, P. M.; Ibers, J. A. Structure of KErTe2. Acta Cryst. 1992, C48, 1301–1303.
(9) Bronger, W.; Brüggemann, W.; Vonderahe, M.; Schmitz, D. Zur Synthese und struktur ternärer chalcogenide der seltenen erden AlnX2 mit A = alkalimetall und X = schwefel, selen oder tellur. J. Alloys Compd. 1993, 200, 205–210.
(10) Bronger, W.; Eyck, J.; Kruse, K.; Schmitz, D. Ternary rubidium rare-earth sulfides; synthesis and structure. Eur. J. Solid State Inorg. Chem. 1996, 33, 213–226.
(11) Deng, B.; Ellis, D. E.; Ibers, J. A. New layered rubidium rare-earth selenides: syntheses, structures, physical properties and electronic structures for RbLnSe2. Inorg. Chem. 2002, 41, 5716–5720.
(12) Stöwe, K.; Napoli, C.; Appel, S. Synthesen und kristallstrukturen von neuen alkalimetall-selten-erd-telluriden der zusammensetzung KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) und CsLnTe2 (Ln = Nd). Z. Anorg. Allg. Chem. 2003, 629, 1925–1928.
(13) Babo, J. M.; Schleid, T. Two alkali-metal yttrium tellurides: single crystals of trigonal KYTe2 and hexagonal RbYTe2. Z. Anorg. Allg. Chem. 2009, 635, 1160–1162.
(14) Kim, S. J.; Park, S. J.; Yun, H. S.; Do, J. W. Syntheses and crystal structures of new ternary selenides: Rb3Yb7Se12 and CsEr3Se5. Inorg. Chem. 1996, 35, 5283–5289.
(15) Folchnandt, M.; Schleid, T. Synthesis and crystal structure of Cs3Y7Se12. Z. Anorg. Allg. Chem. 1997, 623, 1501–1502.
(16) Folchnandt, M.; Schleid, T. Ternary selenides of the lanthanides with alkali metals: I. the composition Cs3M7Se12 (M = Gd–Ho). Z. Anorg. Allg. Chem. 1998, 624, 1595–1600.
(17) Folchnandt, M.; Schleid, T. Crystal structure of trirubidium dodekaselenoheptadysprosate(III), Rb3Dy7Se12. Z. Kristallord. New Cryst. Struct. 2000, 215, 9–10.
(18) Tougait, O.; Noël, H.; Ibers, J. A. Serendipitous syntheses of the series Cs3Ln7Te12 (Ln = Sm, Gd, Tb): compounds with large tunnels. Solid State Sci. 2001, 3, 513–518.
(19) Lissner, F.; Hartenbach, I.; Schleid, T. K3Er7S12 and Rb3Er7S12: two ternary erbium(III) sulfides with channel structures. Z. Anorg. Allg. Chem. 2002, 628, 1552–1555.
(20) Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses and structures of CsHo3Te5 and Cs3Tm11Te18 and the electronic structure of CsHo3Te5. J. Solid State Chem. 2005, 178, 41–46.
(21) Babo, J. M.; Scheid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465.
(22) Lemoine, P.; Tomas, A.; Carre, D.; Vovan, T.; Guittard, M. Structure du sulfure de thulium et de potassium K2Tm23.33S36. Acta Cryst. 1989, C45, 350–353.
(23) Stöwe, K. Syntheses and crystal structures of KPrTe4, KGdTe4 and RbGdTe4. Solid State Sci. 2003, 5, 765–769.
(24) Stöwe, K.; Napoli, C.; Appel, S. Die kristallstrukturen von KNdTe4, RbPrTe4 und RbNdTe4-untersuchungen zur thermischen stabilitaet von KNdTe4 sowie bemerkungen zu einigen anderen vertretern der zusammensetzung ALnTe4 (A = K, Rb, Cs und Ln = Seltenerd-Metall). Z. Anorg. Allg. Chem. 2003, 629, 321–326.
(25) Sutorik, A. C.; Kanatzidis, M. G. Reactions of lanthanides and actinides in molten alkali metal/polychalcogenide fluxes at intermediate
temperatures (250~600 °C). Chem. Mater. 1997, 9, 387–398.
(26) Stöwe, K. Electronic band structures and physical properties of ALnTe4 and ALn3Te8 compounds (A = alkali metal; Ln = lanthanoid). J. Solid State Chem. 2003, 176, 594–608.
(27) Patschke, R.; Heising, J.; Schindler, J.; Kannewurf, C. R.; Kanatzidis, M. Site occupancy wave and unprecedented infinite zigzag (Te2–2 )n chains in the flat Te nets of the new ternary rare earth telluride family ALn3Te8. J. Solid State Chem. 1998, 135, 111–115.
(28) Stöwe, K. Die kristallstruktur von KPr3Te8. Z. Anorg. Allg. Chem. 2003, 629, 403–409.
(29) Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: Cs[Lu7Q11] and (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596.
(30) Wang P.; Lin, H. Synthesis, structure, and property of a three-dimensional channel quaternary compound: Cs0.75(6)Er4.43(5)In3.32(6)S12. Chin. J. Struct. Chem. 2013, 32, 1873–1879.
(31) Zheng, Y. J.; Liu, P. F.; Wu, X. T.; Wu, L. M.; Lin, H. Synthesis, crystal structure, physical properties and theoretical studies of new ternary sulfide with closed cavities: CsYb7S11. Chin. J. Struct. Chem. 2017, 36, 1780–1790.
(32) Koscielski, L. A.; Ibers, J. A. The structural chemistry of quaternary chalcogenides of the type AMM’Q3. Z. Anorg. Allg. Chem. 2012, 638, 2585–2593.
(33) Patschke, R.; Heising, J.; Kanatzidis, M.; Brazis, P.; Kannewurf, C. R. KCuCeTe4: a new intergrowth rare earth telluride with an incommensurate superstructure associated with a distorted square net of tellurium. Chem. Mater. 1998, 10, 695–697.
(34) Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. G. Cu0.66EuTe2, KCu2EuTe4 and Na0.2Ag2.8EuTe4: compounds with modulated square Te nets. J. Mater. Chem. 1999, 9, 2293–2296.
(35) Stoll, P.; Duerichen, P.; Naether, C.; Bensch, W. Synthesis and crystal structure of KCuGd2S4: a three dimensional framework with isolated channels. Z. Anorg. Allg. Chem. 1998, 624, 1807–1810.
(36) Huang, F. Q.; Ibers, J. A. Syntheses and structures of the new quaternary rubidium selenides RbLn2CuSe4 (Ln = Sm, Gd, Dy), Rb1.5Ln2Cu2.5Se5 (Ln = Gd, Dy), and RbSm2Ag3Se5. J. Solid State Chem. 2000, 151, 317–322.
(37) Babo, J. M.; Strobel, S.; Schleid, T. Syntheses and crystal structures of CsCuNd2Se4 and CsCuGd2Te4: two non-isotypical cesium copper lanthanide chalcogenides with infinite {[CuCh3]} chains of vertex-shared [CuCh4]7- tetrahedral. Z. Anorg. Allg. Chem. 2010, 636, 349–355.
(38) Babo, J. M.; Schleid, T. CsCuSc3Te6 and CsCuY2Te4: two new quaternary cesium copper rare-earth metal tellurides. Solid State Sci. 2010, 12, 238–245.
(39) Huang, F. Q.; Ibers, J. A. Syntheses, structures and physical properties of the new quaternaryrare-earth chalcogenides RbNd2CuS4, RbSm2CuS4, CsLa2CuSe4, CsSm2CuSe4, RbEr2Cu3S5, CsGd2Ag3Se5, CsTb2Ag3Se5 and Rb2Gd4Cu4S9. J. Solid State Chem. 2001, 158, 299–306.
(40) Zeng, H. Y.; Mao, J. G.; Chen, J. T.; Dong Z. C.; Guo, G. C.; Huang, J. S. Synthesis and structure of IR-transparent rare-earth selenides KLn2CuSe4 (Ln = Ho, Er). J. Alloys Compd. 2002, 336, 148–153.
(41) Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses, structures, physical properties and electronic structures of KLn2CuS4 (Ln = Dy, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln = Dy, Ho). J. Solid State Chem. 2003, 176, 5–12.
(42) Yao, J. W.; Ibers, J. A. RbGd2CuS4. Acta Crystallogr. E 2004, 60, i95–i96.
(43) Bensch, W.; Duerichen, P. Preparation and crystal structure of the new quaternary europium polysulfide KCuEu2S6. Chem. Ber. 1996, 129, 1489–1492.
(44) Sutorik, A. C.; Albritton-Thomas, J.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. New quaternary compounds resulting from the reaction of copper and f-block metals in molten polychalcogenide salts at intermediate temperatures valence fluctuations in the layered CsCuCeS3. Chem. Mater. 1996, 8, 751–761.
(45) Lauxmann, P.; Schleid, T. CsCu3Dy2S5 und CsCu3Er2S5: zwei isotype quaternaere sulfide der lanthanoide mit kanalstrukturen. Z. Naturforsch., B: Chem. Sci. 2001, 56, 1149–1154.
(46) Ijjaali, I.; Ibers, J. A. Preparation and structures of CsGd2Cu3Se5 and CsTb2Cu3Se5. J. Alloys Compd. 2003, 353, 124–127.
(47) Strobel, S.; Schleid, T. Quaternaere caesium-kupfer(I)-lanthanoid(III)-selenide vom typ CsCu3M2Se5 (M = Sm, Gd–Lu). Z. Anorg. Allg. Chem. 2004, 630, 706–711.
(48) Babo, J. M.; Hartenbach, I.; Schleid, T. A quaternary scandium telluride with infinite chains of cis-edge sharing [CuTe4]7- tetrahedral. Z. Kristallogr. Supplement Issue 2007, 25, 19.
(49) Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. K2Ag3CeTe4: a semiconducting tunnel framework made from the covalent "link-up" of [Ag2CeTe4](3-) layers with Ag. Inorg. Chem. 1998, 37, 6562–6563.
(50) Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. Rb2Cu3CeTe5: a quaternary semiconducting compound with a two-dimensional polytelluride framework. J. Mater. Chem. 1998, 8, 2587–2589.
(51) Huang, F. Q.; Ibers, J. A. Syntheses and structures of the quaternary copper tellurides K2Ln4Cu5Te10 (Ln = Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln = Nd, Gd) and Cs3Gd4Cu5Te10. J. Solid State Chem. 2001, 160, 409–414.
(52) Meng, C. Y.; Chen, H.; Wang, P.; Chen, L. Syntheses, structures, and magnetic and thermoelectric properties of double-tunnel tellurides: AxRE2Cu6-xTe6 (A = K–Cs; RE = La–Nd). Chem. Mater. 2011, 23, 4910–4919.
(53) Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Quaternary rare-earth selenides with closed cavities: Cs[RE9Mn4Se18] (RE = Ho–Lu). Inorg. Chem. Front. 2015, 2, 298–305.
(54) Lin, H.; Chen, H.; Liu, P. F.; Yu, J. S.; Zheng, Y. J.; Ali, K. M.; Chen, L.; Wu, L. M. Syntheses, structures, physical and electronic properties of quaternary semiconductors: Cs[RE9Cd4Se18] (RE = Tb–Tm). Dalton Trans. 2016, 45, 5775–5782.
(55) Chen, H.; Liu, P. F.; Lin, H.; Wu, L. M.; Wu, X. T. Solid-state preparation, structural characterization, physical properties and theoretical studies of a series of novel rare-earth metal-chalcogenides with unprecedented closed cavities. Cryst. Growth Des. 2019, 19, 444–452.
(56) Crystal Clear, Version 1. 3. 5. Rigaku Corp.: The Woodlands, TX 1999.
(57) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst., Sect. A: Found. Cryst. 2008, 112–122.
(58) Gelato, L. M.; Parthe, E. STRUCTURETIDY - a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143.
(59) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
(60) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
(61) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
(62) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
(63) Fournѐs, L.; Vlasse, M.; Saux, M. Preparation, properties and crystal structure of TlV5S8. Mater. Res. Bull. 1977, 12, 1–5.
(64) Babo, J. M.; Schleid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465.
(65) Teske, C. L.; Bensch, W.; Mankovsky, S.; Ebert, H. Preparation, crystal structure, physical properties and electronic band structure of TlScQ2 (Q = S, Se and Te). Z. Anorg. Allg. Chem. 2008, 634, 445–451.
(66) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. Synthesis, structure, and conductivity of the new group IV chalcogenides, KCuZrQ3 (Q = S, Se, Te). J. Solid State Chem. 1992, 101, 257–264.
(67) Yin, W.; Wang, W.; Bai, L.; Feng, K.; Shi, Y.; Hao, W.; Yao, J.; Wu, Y. Syntheses, structures, physical properties, and electronic structures of Ba2MLnTe5 (M = Ga and Ln = Sm, Gd, Dy, Er, Y; M = In and Ln = Ce, Nd, Sm, Gd, Dy, Er, Y). Inorg. Chem. 2012, 51, 11736–11744.
(68) Prakash, J.; Mesbah, A.; Beard, J. C.; Ibers, J. A. Syntheses and crystal structures of BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3. Z. Anorg. Allg. Chem. 2015, 641, 1253–1257.
(69) Durbin, S. M.; Han, J.; Sungki, O.; Kobayashi, M.; Menke, D. R.; Gunshor, R. L. Zinc-blende MnTe: epilayers and quantum well structures. Appl. Phys. Lett. 1989, 55, 2087.
(70) Wu, E. J.; Ibers, J. A. Cs2Mn3Te4. Acta Cryst. 1997, C53, 993–994.
(71) Zimmermann, C.; Dehnen, S. Cs2(MnSnTe4): ungewoehnliche synthese einer quaternaeren phase mit eindimensionalen, ternaeren anionenstraengen. Z. Anorg. Allg. Chem. 2003, 629, 1553–1556.
(72) Ward, M. D.; Mesbah, A.; Lee, M.; Malliakas, C. D.; Choi, E. S.; Ibers, J. A. Synthesis and characterization of two quaternary uranium tellurides, RbTiU3Te9 and CsTiU3Te9. Inorg. Chem. 2014, 53, 7909–7915.
(73) Li, H.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Im, J.; Jin, H.; Morris, C. D.; Zhao, L. D.; Wessels, B. W.; Freeman, A. J.; Kanatzidis, M. G. CsCdInQ3 (Q = Se, Te): new photoconductive compounds as potential materials for hard radiation detection. Chem. Mater. 2013, 25, 2089–2099.
|