摘要A pair of nickel(II) complexes monomer and dimer, namely [NiCl2(L)] (1) and [Ni2Cl2(L)2(μ-Cl)2] (2) (L = 2-morpholine-4-yl-4,6-di-pyrazol-1-yl-1,3,5-triazine), were synthesized by using L to react with NiCl2·2H2O at 35 and 65 ℃, respectively. X-ray crystal structures of complexes 1 and 2 were determined. Complex 1 is mononuclear and its nickel(II) center resides in a distorted square-pyramidal environment with a NiN3Cl2 donor set, but complex 2 is binuclear and its nickel(II) center shows a distorted octahedral geometry with a NiN3Cl3 donor set. In complex 2, two adjacent nickel(II) centers are connected by two bridging chloride anions. Complexes 1 and 2 form different three-dimensional supramolecular structures through non-covalent interactions such as π-π stacking interactions, anion-π interactions and weak hydrogen bonds. Both complexes were further characterized by thermal gravimetric analyses and spectroscopic methods.
Abstract:A pair of nickel(II) complexes monomer and dimer, namely [NiCl2(L)] (1) and [Ni2Cl2(L)2(μ-Cl)2] (2) (L = 2-morpholine-4-yl-4,6-di-pyrazol-1-yl-1,3,5-triazine), were synthesized by using L to react with NiCl2·2H2O at 35 and 65 ℃, respectively. X-ray crystal structures of complexes 1 and 2 were determined. Complex 1 is mononuclear and its nickel(II) center resides in a distorted square-pyramidal environment with a NiN3Cl2 donor set, but complex 2 is binuclear and its nickel(II) center shows a distorted octahedral geometry with a NiN3Cl3 donor set. In complex 2, two adjacent nickel(II) centers are connected by two bridging chloride anions. Complexes 1 and 2 form different three-dimensional supramolecular structures through non-covalent interactions such as π-π stacking interactions, anion-π interactions and weak hydrogen bonds. Both complexes were further characterized by thermal gravimetric analyses and spectroscopic methods.
楚进锋;王术影;张明煜;徐启欣;王有卿. Syntheses, Crystal Structures, Non-covalent Interactions and Properties of a Nickel(II) Complex Monomer and Its Dimer[J]. 结构化学, 2020, 39(10): 1877-1884.
CHU Jin-Feng;WANG Shu-Ying;ZHANG Ming-Yu;XU Qi-Xin;WANG You-Qing . Syntheses, Crystal Structures, Non-covalent Interactions and Properties of a Nickel(II) Complex Monomer and Its Dimer. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39(10): 1877-1884.
REFERENCES
(1) Wang, A. N.; Fan, R. Q.; Dong, Y. W.; Chen, W.; Song, Y. W.; Wang, P.; Hao, S.; Liu, Z. G.; Yang, Y. L. (E)-4-Methyl-N-((quinolin-2-
yl)ethylidene)aniline as ligand for IIB supramolecular complexes: synthesis, structure, aggregation-induced emission
enhancement and application in PMMA-doped hybrid material. Dalton Trans. 2017, 46, 71–85.
(2) Strelnik, I. D.; Musina, E. I.; Karasik, A. A.; Sizov, V. V.; Grachova, E. V.; Gurzhiy, V. V.; Melnikov, A. S.; Kolesnikov, I. E. Binuclear gold(I) phosphine alkynyl complexes templated on a flexible cyclic phosphine ligand: synthesis and some features of solid-state luminescence. Inorg. Chem. 2020, 59, 244–253.
(3) Yang, L. G.; Wang, X.; Zhang, Y. H.; Li, Z. M.; Song, H. X.; Niu, Y. S.; Tao, Z.; Liu, Q. Y.; Xiao, X. Structure and electrochemical studies on the complexation of hexacyclohexanocucurbit[6]uril with lead ion. Polyhedron 2018, 142, 58–62.
(4) Zhang, Y.; Ali, B.; Wu, J. F.; Guo, M.; Yu, Y.; Liu, Z. L.; Tang, J. K. Construction of metallosupramolecular coordination complexes: from lanthanide helicates to octahedral cages showing single-molecule magnet behavior. Inorg. Chem. 2019, 58, 3167–3174.
(5) Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution. Inorg. Chem. 2015, 54, 1800–1807.
(6) Wenz, K. M.; Leonhardt-Lutterbeck, G.; Breit, B. Inducing axial chirality in a supramolecular catalyst. Angew. Chem. Int. Ed. 2018, 57, 5100–5104.
(7) Chen, L. D.; Zhou, L. X.; Zheng, Y. Q.; Zhu, H. L. Two new Ag(I) supramolecular complexes based on melamine: synthesis, structures and photocatalytic activity under visible light irradiation. Polyhedron 2017, 126, 150–158.
(8) Freire, C.; Nunes, M.; Pereira, C.; Fernandes, D. M.; Peixoto, A. F.; Rocha, M. Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord. Chem. Rev. 2019, 394, 104–134.
(9) Hu, M. L.; Morsali, A.; Aboutorabi, L. Lead(II) carboxylate supramolecular compounds: coordination modes, structures and nano-structure aspects. Coord. Chem. Rev. 2011, 255, 2821–2859.
(10) Walczak, A.; Stefankiewicz, A. R. pH-Induced linkage isomerism of Pd(II) complexes: a pathway to air- and water-stable suzuki-miyaura-reaction catalysts. Inorg. Chem. 2018, 57, 471–477.
(11) Hema, M. K.; Karthik, C. S.; Pampa, K. J.; Manukumar, H. M.; Mallu, P.; Warad, I.; Lokanath, N. K. Solvent induced 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione Cu(II) complexes: synthesis, structure, DFT calculation and biocidal activity. Polyhedron 2019, 168, 127–137.
(12) Jiang, P.; Peng, F.; Chen, Y. M. Temperature-induced single-crystal-to-single-crystal transformation of a binuclear Mn(II) complex into a 1D chain polymer. RSC Adv. 2016, 6, 89192–89197.
(13) Takjoo, R.; Mashmoul Moghadam, S. M.; Amiri Rudbari, H.; Bruno, G. Synthesis and X-ray crystal structures of some isothiosemicarbazone complexes. Transit. Met. Chem. 2019, 44, 525–534.
(14) Takai, A.; Chkounda, M.; Eggenspiller, A.; Gros, C. P.; Lachkar, M.; Barbe, J. M.; Fukuzumi, S. Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via π-π interactions in nonpolar media. J. Am. Chem. Soc. 2010, 132, 4477–4489.
(15) Parra-Munoz, N.; Hidalgo, P. I.; Ripoll, G.; Belmar, J.; Pasan, J.; Jimenez, C. A. Influence of counterions on the supramolecular frameworks of isoquinoline-based silver(I) complexes. CrystEngComm. 2020, 22, 95–104.
(16) Mohana, M.; Muthiah, P. T.; McMillen, C. D. Supramolecular architectures in two 1:1 cocrystals of 5-fluorouracil with 5-bromothiophene-2-carboxylic acid and thiophene-2-carboxylic acid. Acta Cryst. 2017, C73, 481–485.
(17) Nowroozi, A.; Ebrahimi, A.; Rezvani, R. O. Mutual effects of the cation-π, anion-π and intramolecular hydrogen bond in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene with some cations (Li+, Na+, K+, Mg2+, Ca2+) and anions (F–, Cl–, Br–). Struct. Chem. 2018, 29, 129–137.
(18) Xiao, G. B.; Fang, Z. H.; Yao, X. Q. A new cadmium(II) coordination polymer extended through hydrogen bonds and π-π stacking interactions: synthesis and photoluminescence property. Chin. J. Struct. Chem. 2018, 37, 1987–1993.
(19) Tom, L.; Aiswarya, N.; Sreejith, S. S.; Kurup, M. R. P. Self-organized three dimensional architectures based on non-covalent interactions in square planar Cu(II) thiosemicarbazone: solvent mediated crystallization and EPR based correlation study. Inorg. Chim. Acta 2018, 473, 223–235.
(20) Wan, Q. Y.; Xiao, X. S.; To, W. P.; Lu, W.; Chen, Y.; Low, K. H.; Che, C. M. Counteranion- and solvent-mediated chirality transfer in the supramolecular polymerization of luminescent platinum(II) complexes. Angew. Chem. Int. Ed. 2018, 57, 17189–17193.
(21) Zhou, Q. K.; Wang, L.; Liu, D. Construction of a three-dimensional supramolecular framework based on an anionic cadmium(II) coordination network and protonated dipyridine organic cations. Acta Cryst. 2018, C74, 889–893.
(22) Engeldinger, E.; Armspach, D.; Matt, D.; Jones, P. G.; Welter, R. A cyclodextrin diphosphane as a first and second coordination sphere cavitand: evidence for weak C–H···Cl–M hydrogen bonds within metal-capped cavities. Angew. Chem. Int. Ed. 2002, 41, 2593–2596.
(23) Frontera, A.; Gamez, P.; Mascal, M.; Mooibroek, T. J.; Reedijk, J. Putting anion-π interactions into perspective. Angew. Chem. Int. Ed. 2011, 50, 9564–9583.
(24) Bettencourt-Dias, A.; Beeler, R. M.; Zimmerman, J. R. Anion-π and H-bonding interactions supporting encapsulation of [Ln(NO3)6/5]3–/2– (Ln = Nd, Er) with a triazine-based ligand. J. Am. Chem. Soc. 2019, 141, 15102–15110.
(25) Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 2008, 37, 68–83.
(26) Chen, W.; Chu, J. F.; Wang, Y. Q. Synthesis, characterization and preliminary reactivity behaviors with transitional metals of a new polydentate N-donor ligand. J. Mol. Struct. 2014, 1068, 237–244.
(27) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(28) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
(29) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures.University of Göttingen. Göttingen, Germany 1997.
(30) Yun, J. X.; Hu, Z. L.; Li, Y. M.; Jin, J.; Chen, C.; Yan, X.; Liu, Y. H.; Ding, Y.; Chi, Y. X.; Niu, S. Y. Synthesis, structure and photoelectric property of a series of Ni(Ⅱ) complexes constructed through aromatic carboxylic ligands. Chem. J. Chin. Univ. 2018, 39, 2161–2169.
(31) Rodríguez, A.; García-Vázquez, J. A.; Romero, J.; Sousa-Pedrares, A.; Sousa, A.; Castro, J. Electrochemical synthesis and characterization of cobalt(II), cobalt(III), and nickel(II) complexes with pyrimidine-2-thionato ligands. Z. Anorg. Allg. Chem. 2007, 633, 763–770.
(32) Vallarino, L. M.; Goedken, V. L.; Quagliano, J. V. Donor properties of positively charged ligands. Metal complexes of the N-chloromethyl-dabconium ligand. Inorg. Chem. 1973, 12, 102–107.
(33) Ainscough, E. W.; Brodie, A. M.; Depree, C. V.; Otter, C. A. Divalent cobalt, nickel and zinc halide complexes with multimodal ligands based on the cyclotriphosphazene platform: a structural study. Polyhedron 2006, 25, 2341–2352
(34) Beattie, J. W.; White, D. S.; Bheemaraju, A.; Martin, P. D.; Groysman, S. Recyclable chemosensor for oxalate based on bimetallic complexes of a dinucleating bis(iminopyridine) ligand. Dalton Trans. 2014, 43, 7979–7986.
(35) Hamaguchi, T.; Ando, I. Synthesis and characterisation of a new six-coordinated thermochromic Ni complex. Inorg. Chim. Acta 2015, 427, 144–149.
(36) Pitchaimani, J.; Karthikeyan, S.; Lakshminarasimhan, N.; Anthony, S. P.; Moon, D.; Madhu, V. Reversible thermochromism of nickel(II) complexes and single-crystal-to-single-crystal transformation. ACS Omega 2019, 4, 13756–13761.