REFERENCES
(1) Enserink, M. This time it was real: knowledge of anthrax put to the test. Scienc 2001, 294, 490-491
(2) Yilmaz, M. D.; Oktem, H. A. Eriochrome black T-Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal. Chem. 2018, 90, 4221-4225.
(3) Mock, M.; Fouet, A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647-671.
(4) Kumar, G. A. Anthrax: a disease of biowarfare and public health importance. World J. Clin. Cases 2015, 3, 20-33.
(5) Walt, D. R.; Franz, D. R. Biological warfare detection. Anal. Chem. 2000, 72, 738A-746A .
(6) Wang, Q. X.; Xue, S. F.; Chen, Z. H.; Ma, S. H.; Zhang, S.; Shi, G.; Zhang, M. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 2017, 94, 388-393.
(7) Rong, M. C.; Liang, Y. C.; Zhao, D. L.; Chen, B. J.; Pan, C.; Deng, X. Z.; Chen, Y. B.; He, J. A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sens. Actuators B 2018, 265, 498-505.
(8) Tan, H. L.; Ma, C. J.; Chen, L. L.; Xu, F. G.; Chen, S. H.; Wang, L. Nanoscaled lanthanide/nucleotide coordination polymer for detection of an anthrax biomarker. Sens. Actuators B 2014, 190, 621-626.
(9) Kong, L. B.; Setlow, P.; Li, Y. Q. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments. Analyst. 2012, 137, 3683-3689.
(10) Klonkowski, A.; Lis, S.; Hnatejko, Z.; Czarnobaj, K.; Pietraszkiewicz, M.; Elbanowski, M. Improvement of emission intensity in luminescent materials based on the antenna effect. J.Alloy. Compd. 2000, 300, 55-60.
(11) Lin, Z. Y.; Qu, Z. B.; Chen, Z. H.; Han, X. Y.; Deng, L. X.; Luo, Q. Y.; Jin, Z. W.; Shi, G. Y.; Zhang, M. The marriage of protein and lanthanide: unveiling a time-resolved fluorescence sensor array regulated by pH toward high throughput assay of metal ions in biofluids. Anal. Chem. 2019, 91, 11170-11177.
(12) Rong, M. C.; Deng, X. Z.; Chi, S.; Huang, L. Z.; Zhou, Y. B.; Shen, Y. N.; Chen, X. Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using europium(III)-doped carbon dots in a test stripe. Microchim Acta 2018, 185, 2-10.
(13) Zhang, L.; Jiang, D. Y.; Xia, J. F.; Zhang, N.; Li, Q. Fluorescence enhancement of europium-doped yttrium hydroxide nanosheets modified by 2-thenoyltrifluoroacetone. RSC Adv. 2014, 34, 17856-17857.
(14) Viveros-Andrade, A. G.; Colorado-Peralta, R.; Flores-Alamo, M.; Castillo-Blum, S. E.; Duran-Hernandez, J.; Rivera, J. M. Solvothermal synthesis and spectroscopic characterization of three lanthanide complexes with high luminescent properties [H2NMe2]3[Ln(III)(2,6-pyridinedicarboxylate)3] (Ln = Sm, Eu, Tb): in the presence of 4,4-bipyridyl. J. Mol. Struct. 2017, 1145, 10-17.
(15) Ming, C. L.; Du, X.; Qin, L.; Cui, G. H. Crystal Structural and fluoresence properties of a two-dimensional cobaltous coordination polymer containing bis(benzimidazole) ligand. J. Struct. Chem. 2014, 55, 927-931.
(16) Yu, Y. Y.; Zhang, H. Q. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin. J. Struct. Chem. 2016, 35, 472-480.
(17) Yilmaz, M. D.; Hsu, S. H.; Reinhoudt, D. N.; Velders, A.; Huskens, H. J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew. Chem. Int. Ed. 2010, 49, 5938-4941.
(18) Rosen, D. L.; Sharpless, C.; McGown, L. B. Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal. Chem. 1997, 69, 1082-1085.
(19) Pellegrino, P. M.; Fell, N. F.; Rosen, D. L.; Gillespie, J. B. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal. Chem. 1998, 70, 1755-1760.
(20) Xu, J.; Shen, X. K.; Jia, L.; Zhang, M. M.; Zhou, T.; Wei, Y. K. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Biosens. Bioelectron. 2017, 87, 991-997.
(21) Ke, L.; Meng, R.; Shan, C.; Jing, C.; Jia, J.; Liu, W. S.; Tang, Y. A novel terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker. Anal. Chem. 2018, 90, 3600-3607.
(22) Ammann, A. B.; Kolle, L.; Brandl, H. Detection of bacterial endospores in soil by terbium fluorescence. Int. J. Microbiol. 2011, 2011, 1-5.
(23) Yang, W.; Li, Q.; Zheng, X. H.; Li, X.; Li, X. Luminescent sensing film based on sulfosalicylic acid modified Tb(Ⅲ)-doped yttrium hydroxide nanosheets. J. Adv. Ceram. 2018, 7, 352-361.
(24) Siddiqi, Z. A.; Khalid, M. Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxiliary ligand. Eur. J. med. chem. 2010, 45, 264-269.
(25) Chen, H.; Xie, Y. J.; Kirillov, A. M.; Liang, L. L.; Yu, M. H.; Liu, W. S.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036-5039.
(26) Zhang, Y. H.; Li, B.; Ma, H. P.; Zhang, L. M.; Zheng, Y. X. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens. Bioelectron. 2016, 85, 287-293.
(27) Ma, K.; Wang, H.; Li, X.; Xu, B.; Tian, W. J. Turn-on sensing for Ag+ based on aie-active fluorescent probe and cytosine-rich DNA. Anal. Bioanal. Chem. 2015, 407, 2625-2630.
|