REFERENCES
(1) Aakeröy, C. B.; Fasulo, M.; Schultheiss, N.; Desper, J.; Moore, C. Structural competition between hydrogen bonds and halogen bonds. J. Am. Chem. Soc. 2007, 129, 13772–13773.
(2) Bao, L. P.; Wang, B. Z.; Yu, P. Y.; Huang, C. L.; Pan, C. W.; Fang, H. Y.; Akasaka, T.; Guldi, D. M.; Lu, X. Intermolecular packing and charge transfer in metallofullerene/porphyrin cocrystals. Chem. Commun. 2019, 55, 6018–6021.
(3) Aakeröy, C. B.; Forbes, S.; Desper, J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J. Am. Chem. Soc. 2009, 131, 17048–17049.
(4) Basavoju, S.; Boström, D.; Velaga, S. P. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Phar. Res. 2008, 25, 530–541.
(5) Cuyckens, F. Mass spectrometry in drug metabolism and pharmacokinetics: current trends and future perspectives. Rap. Comm. Mas. Spe. 2019, 33, 90–95.
(6) Blagden, N.; Matas, M.; Gavan, P. T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Dru. Del. Rev. 2007, 59, 617–630.
(7) Odani, T.; Matsumoto, A. Photodimerization of 2-pyridone in cocrystals with carboxylic acids using the stacking effect of naphthalene rings. Cryst. Eng. Comm. 2002, 4, 467–471.
(8) Kama, A. B.; Jeanneau, E.; Sidibe, M.; Diop, C. A. K.; Gautier, R. Cocrystallization through the use of a salt: the case of thiourea with a new propanediammonium oxalate salt. J. Crys. Gro. 2019, 528, 125267.
(9) Zhang, X. M.; Sun, F. X.; Zhang, T. T.; Jia, J. T.; Su, H. M.; Wang, C. H.; Zhu, G. S. Three pharmaceuticals cocrystals of adefovir: syntheses, structures and dissolution study. J. Mol. Struct. 2015, 1100, 395–400.
(10) Kaur, R.; Cavanagh, K. L.; Rodríguez-Hornedo, N.; Matzger, A. J. Multidrug cocrystal of anticonvulsants: influence of strong intermolecular interactions on physiochemical properties. Cryst. Growth Des. 2017, 17, 5012–5016.
(11) Yao, J.; Chen, J. M.; Xu, Y. B.; Lu, T. B. Enhancing the solubility of 6 mercaptopurine by formation of ionic cocrystal with zinc trifluoromethanesulfonate: single-crystal-to-single-crystal transformation. Cryst. Growth Des. 2014, 14, 5019–5025.
(12) Qiao, N.; Li, M. Z.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: an overview. Int. J. Phar. 2011, 419, 1–11.
(13) Izutsu, K.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and quality control of pharmaceutical cocrystals. Chem. Pharm. Bull. 2016, 64, 1421–1430.
(14) Aljohani, M.; Pallipurath, A. R.; McArdle, P.; Erxleben, A. A comprehensive cocrystal screening study of chlorothiazide. Cryst. Growth Des. 2017, 17, 5223–5232.
(15) Wang, L.; Luo, M.; Li, J. H.; Wang, J. M.; Zhang, H. L.; Deng, Z. W. Sweet theophylline cocrystal with two tautomers of acesulfame. Cryst. Growth Des. 2015, 15, 2574–2578.
(16) Almeida, A. C.; Torquetti, C.; Ferreira, P. O.; Fernandes, R. P.; Santos, E. C.; Kogawa, A. C.; Caires, F. J. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochimica Acta. 2020, 685, 178346.
(17) Aitipamula, S.; Chowa, P. S.; Tan, R. B. H. Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs. CrystEngComm. 2009, 11, 1823–1827.
(18) Simon, F. The trouble with making combination drugs. Nat. Rev. Dru. Dis. 2006, 5, 881–882.
(19) Shah, H. J.; Subbaiah, G.; Patel, D. M.; Patel, C. N. In vitro-in vivo correlation of modified release dosage form of lamotrigine. Dru. Dispos. 2009, 30, 524–531.
(20) Stanton, M. K.; Kelly, R. C.; Colletti, A.; King, Y. H.; Langley, M.; Munson, E. J.; Peterson, M. L.; Roberts, J.; Wells, M. Improved pharmacokinetics of AMG 517 through co-crystallization part 1: comparison of two acids with corresponding amide co-crystals. Pharm. Sci. 2010, 99, 3769–3778.
(21) Gajda, M.; Nartowski, K. P.; Pluta, J.; Karolewicz, B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: a case of theophylline-nicotinamide cocrystal. Int. J. Phar. 2019, 569, 118579.
(22) Hariprasad, V. M.; Nechipadappu, S. K.; Trivedi, D. R. Cocrystals of ethenzamide: study of structural and physicochemical properties. Cryst. Growth Des. 2016, 16, 4473–4481.
(23) Zheng, K.; Li, A.; Wu, W. W.; Qian, S. S.; Liu, B. H.; Pang, Q. X. Preparation, characterization, in vitro and in vivo evaluation of metronidazoleegallic acid cocrystal: a combined experimental and theoretical investigation. J. Mol. Struct. 2019, 1197, 727–735.
(24) Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI (2009).
(25) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3.
(26) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., A, Found. Crystallogr. 2008, 64, 112.
(27) Xia, C. K.; Min, Y. Y.; Yang, K.; Sun, W.; Jiang, D. L.; Chen, M. Syntheses, crystal structures and properties of three novel silver-organic frameworks assembled from 1,2,3,5-benzenetetracarboxylic acid based on argentophilic interactions. Cryst. Growth Des. 2018, 18, 1978–1986.
(28) Singh, K.; Barwa, M. S.; Tyagi, P. Synthesis and characterization of cobalt(II), nickel(II), copper(II)and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Eur. J. Med. Chem. 2007, 42, 394–402.
(29) Jiang, Y.; Zhu, C. F.; Zheng, Z.; He, J. B.; Wang, Y. Synthesis, characterization and antibacterial activity of a biocompatible silver complex based on 2,20-bipyridine and 5-sulfoisophthalate. Inorg. Chim. Acta 2016, 451, 143–147.
(30) Shabbir, M.; Akhter, Z.; Ismail H.; Mirza, B. Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes. J. Mol. Struct. 2017, 1146, 57–61.
(31) Song, Y.; Qin, R. X.; Pan, X. C.; Ouyang, Q.; Liu, T. Y.; Zhai, Z. X.; Chen, Y. C.; Li, B.; Zhou, H. Design of new antibacterial enhancers based on AcrB΄s structure and the evaluation of their antibacterial enhancement activity. J. Mol. Sci. 2016, 17, 1934.
(32) Li, B.; Yao, Q.; Pan, X. C.; Wang, N.; Zhang, R.; Li, J.; Ding, G. F.; Liu, X.; Wu, C.; Ran, D. Z.; Zheng, J.; Zhou, H. Artesunate enhances the antibacterial effect of b-lactam antibiotics against escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC. J. Antimicrob Chemother. 2011, 66, 769–777.
|