REFERENCES
(1) Das, S.; Rissanen, K.; Sahoo, P. Rare crystal structure of open spirolactam ring along with the closed-ring form of a rhodamine derivative: sensing of Cu2+ ions from spinach. ACS Omega 2019, 4, 5270–5274.
(2) Zhang, C.; Yan, Y.; Pan, Q.; Sun, L.; He, H.; Liu, Y.; Liang, Z.; Li, J. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions. Dalton Trans. 2015, 44, 13340–13346.
(3) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, Prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995–2044.
(4) Shabani, A. M. H.; Dadfarnia, S.; Dehghani, Z. On-line solid phase extraction system using 1,10-phenanthroline immobilized on surfactant coated alumina for the flame atomic absorption spectrometric determination of copper and cadmium. Talanta 2009, 79, 1066–1070.
(5) Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 2011, 40, 3416–3429.
(6) Si, H.; Sheng, R.; Li, Q.; Feng, J.; Li, L.; Tang, B. Highly sensitive fluorescence imaging of Zn2+ and Cu2+ in living cells with signal amplification based on functional DNA self-assembly. Anal. Chem. 2018, 90, 8785–8792.
(7) Gabr, M. T.; Pigge, F. C. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt(II) complex. Dalton Trans. 2018, 47, 2079–2085.
(8) Zhu, X. D.; Zhang, K.; Wang, Y.; Long, W. W.; Sa, R. J.; Liu, T. F.; Lü, J. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater. Inorg. Chem. 2018, 57, 1060–1065.
(9) Griesbeck, S.; Michail, E.; Wang, C.; Ogasawara, H.; Lorenzen, S.; Gerstner, L.; Zang, T.; Nitsch, J.; Sato, Y.; Bertermann, R.; Taki, M.; Lambert, C.; Yamaguchi, S.; Marder, T. B. Tuning the π-bridge of quadrupolar triarylborane chromophores for one- and two-photon excited fluorescence imaging of lysosomes in live cells. Chem. Sci. 2019, 10, 5405–5422
(10) Bhalla, V.; Tejpal, R.; Kumar, M.; Puri, R. K.; Mahajan, R. K. Terphenyl based ‘turn on΄fluorescent sensor for mercury. Tetra. Lett. 2009, 50, 2649–2652.
(11) Chorazy, S.; Wang, J.; Ohkoshi, S. I. Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged DyIII(4-hydroxypyridine)-CoIII layered material. Chem. Commun. 2016, 52, 10795–10798.
(12) Barthelmes, K.; Jäger, M.; Kübel, J.; Friebe, C.; Winter, A.; Wächtler, M.; Dietzek, B.; Schubert, U. S. Efficient energy transfer and metal coupling in cyanide-bridged heterodinuclear complexes based on (bipyridine)(terpyridine)ruthenium(II) and (phenylpyridine)iridium(III) complexes. Inorg. Chem. 2016, 55, 5152–5167.
(13) Büldt, L. A.; Guo, X.; Vogel, R.; Prescimone, A.; Wenger, O. S. A tris(diisocyanide)chromium(0) complex is a luminescent analog of [Fe(2,2΄-bipyridine)3]2+. J. Am. Chem. Soc. 2017, 139, 985–992.
(14) Comte, V.; Vahrenkamp, H. Cyanide bridged oligonuclear complexes containing CuCl and CuCl2. J. Organomet. Chem. 2001, 627, 153–158.
(15) Qin, Z. T.; Sheng, T. L.; Hu, S. M.; Xiang, S. C.; Fu, R. B.; Wang, X.; Shen, C. J.; Wu, X. T. Design, synthesis and crystal structure of two one-dimensional zigzag chain-like compounds. Chin. J. Struc. Chem. 2008, 27, 1013–1019.
(16) Sheldrick, G. M. Program for X-ray Crystal Structure Refinement. University of Göttingen: Germany 2016.
(17) Anderson, K. M.; Orpen, A. G. On the relative magnitudes of cis and trans influences in metal complexes. Chem. Commun. 2001, 2682–2683.
(18) Ma, B. Q.; Sun, H. L.; Gao, S. Vertex-sharing water tape consisting of cyclic hexamers. Eur. J. Inorg. Chem. 2005, 2005, 3902–3906.
(19) Wang, Y.; Ma, X.; Hu, S. M.; Wen, Y. H.; Xue, Z. Z.; Zhu, X. Q.; Zhang, X. D.; Sheng, T. L.; Wu, X. T. Syntheses, crystal structures, MMCT and magnetic properties of four one-dimensional cyanide-bridged complexes comprised of MII-CN-FeIII (M = Fe, Ru, Os). Dalton Trans. 2014, 43, 17453–17462.
(20) Hunter, C. A.; Sanders, J. K. M. The nature of . π-π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534.
(21) Główka, M. L.; Martynowski, D.; Kozłowska, K. Stacking of six-membered aromatic rings in crystals. J. Mol. Struct. 1999, 474, 81–89.
(22) Wang, Y.; Ma, X.; Hu, S. M.; Xue, Z. Z.; Wen, Y. H.; Sheng, T. L.; Wu, X. T. Syntheses, crystal structures, spectroscopy, electrochemical and magnetic properties of four cyanido-bridged MII–MnIII (M = Fe, Ru, Os) complexes. J. Coord. Chem. 2015, 68, 55–70.
(23) Bryant, G.; Fergusson, J.; Powell, H. Charge-transfer and intraligand electronic spectra of bipyridyl complexes of iron, ruthenium, and osmium. I. Bivalent complexes. Aust. J. Chem. 1971, 24, 257–273.
(24) Schilte, A. A. Proton affinities of some cyanide and aromatic diimine complexes of iron, ruthenium and osmium. J. Am. Chem. Soc. 1963, 85, 904–908.
(25) Schilt, A. A. Unusual proton affinities of some mixed ligand iron(II) complexes. J. Am. Chem. Soc. 1960, 82, 5779–5783.
(26) Qiao, N.; Wei, N. N.; Zhang, J. N.; Hao, C. The dual-luminescence mechanism of the ESIPT chemosensor tetrasubstituted imidazole core compound: a TDDFT study. New J. Chem. 2018, 42, 11804–11810.
(27) Ernsting, N. P.; Breffke, J.; Vorobyev, D. Y.; Duncan, D. A.; Pfeffer, I. Sub-picosecond. fluorescence evolution of amino-cyano-stilbenes in methanol: polar solvation obeys continuum theory without evidence of twisting. Phys. Chem. Chem. Phys. 2008, 10, 2043–2049.
|