REFERENCES
(1) Takahashi, N.; Kawada, T.; Goto, T.; Kim, C. S.; Taimatsu, A.; Egawa, K.; Yamamoto, T.; Jisaka, M.; Nishimura, K.; Yokota, K.; Yu, R.; Fushiki, T. Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett. 2003, 550, 190–194.
(2) Alvarez-Manzaneda, E. J.; Chahboun, R.; Guardia, J. J.; Lachkar, M.; Dahdouh, A.; Lara, A.; Messouri, I. New route to 15-hydroxydehydroabietic acid derivatives: application to the first synthesis of some bioactive abietane and nor-abietane type terpenoids. Tetra. Lett. 2006, 47, 2577–2580.
(3) Gigante, B.; Santos, C.; Silva, A. M.; Curto, M. J. M.; Nascimento, M. S. J.; Pinto, E.; Pedro, M.; Cerqueira, F.; Pinto, M. M.; Duarte, M. P.; Laires, A.; Rueff, J.; Gonçalves, J.; Pegado, M. I.; Valdeira, M. L. Catechols from abietic acid: synthesis and evaluation as bioactive compounds. Bioorg. Med. Chem. 2003, 11, 1631–1638.
(4) Halbrook, N. J.; Lawrence, R. V. The isolation of dehydroabietic acid from disproportionated rosin. J. Org. Chem. 1966, 31, 4246–4247.
(5) Bernardo, G.; Esteves, M. A.; Guerreiro, A. M.; Gigante, B.; Morgado, J. Luminescence properties of bipolar stylbeneamine-quinoxalines. Opt. Mater. 2008, 31, 320–327.
(6) Fernández, M. A.; Tornos, M. P.; García, M. D.; de las Heras, B.; Villar, A. M.; Sáenz, M. T. Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea. J. Pharm. Pharmacol. 2001, 53, 867–872.
(7) Ulusu, N. N.; Ercil, D.; Sakar, M. K.; Tezcan, E. F. Abietic acid inhibits lipoxygenase activity. Phytother. Res. 2002, 16, 88–90.
(8) Chen, N. Y.; Duan, W. G.; Lin, G. S.; Liu, L. Z.; Zhang, R.; Li, D. P. Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds. Mol. Divers. 2016, 20, 897–905.
(9) Vahermo, M.; Krogerus, S.; Nasereddin, A.; Kaiser, M.; Brun, R.; Jaffe, C. L.; Yli-Kauhaluoma, J.; Moreira, V. M. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. Med. Chem. Commun. 2016, 7, 457–463.
(10) Hou, W.; Luo, Z.; Zhang, G. J.; Cao, D. H.; Li, D.; Ruan, H. Q.; Ruan, B. H.; Su, L.; Xu, H. T. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. Eur. J. Med. Chem. 2017, 138, 1042–1052.
(11) Fei, B. L.; Li, W.; Xu, W. S.; Long, J. Y.; Liu, Q. B.; Sun, W. Y.; Anson, C. E.; Powell, A. K. Synthesis, crystal structure, DNA binding, antibacterial, and cytotoxic activities of two chiral copper(II) complexes. Eur. J. Inorg. Chem. 2013, 2013, 5919–5927.
(12) Gu, W.; Miao, T. T.; Hua, D. W.; Jin, X. Y.; Tao, X. B.; Huang, C. B.; Wang, S. F. Synthesis and in vitro cytotoxic evaluation of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid. Bioorg. Med. Chem. Lett. 2017, 27, 1296–1300.
(13) Zhao, F. Y.; Lu, W.; Su, F.; Xu, L.; Jiang, D.; Sun, X.; Shi, J. Z.; Zhou, M. Y.; Lin, F.; Cao, F. L. Synthesis and potential antineoplastic activity of dehydroabietylamine imidazole derivatives. Med. Chem. Commun. 2018, 9, 2091–2099.
(14) Zhao, F. Y.; Wang, W. F.; Lu, W.; Xu, L.; Yang, S. L.; Cai, X. M.; Zhou, M. Y.; Lei, M.; Ma, M. T.; Xu, H. J.; Cao, F. L. High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Eur. J. Med. Chem. 2018, 146, 451–459.
(15) Lozano-Cruz, T.; Ortega, P.; Batanero, B.; Copa-Patiño, J. L.; Soliveri, J.; de la Mata, F. J.; Gómez, R. Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Trans. 2015, 44, 19294–19304.
(16) Long, B. H.; He, C. L.; Yang, Y. B.; Xiang, J. N. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems. Eur. J. Med. Chem. 2010, 45, 1181–1188.
(17) Li, S. H.; Wang, Z. J.; Wei, Y. F.; Wu, C. Y.; Gao, S. P.; Jiang, H.; Zhao, X. Q.; Yan, H.; Wang, X. M. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials 2013, 34, 902–911.
(18) Yang, F.; Xu, X. L.; Gong, Y. H.; Qiu, W. W.; Sun, Z. R.; Zhou, J. W.; Audebert, P.; Tang, J. Synthesis and nonlinear optical absorption properties of two new conjugated ferrocene-bridge-pyridinium compounds. Tetrahedron 2007, 63, 9188–9194.
(19) Qu, J.; Song, Y. L.; Ji, W.; Jing, S.; Zhu, D. R.; Huang, W.; Zheng, M. X.; Li, Y. L.; Ma, J. Macrocyclic Se4N2[7,7]ferrocenophane and Se2N[10]ferrocenophane containing benzyl unit: synthesis, complexation, crystal structures, electrochemical and optical properties. Dalton Trans. 2016, 45, 3417–3428.
(20) Zheng, Q. D.; He, G. S.; Lu, C. G.; Prasad, P. N. Synthesis, two- and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives. J. Mater. Chem. 2005, 15, 3488–3493.
(21) Cao, Q. Y.; Pradhan, T.; Kim, S.; Kim, J. S. Ferrocene-appended aryl triazole for electrochemical recognition of phosphate ions. Org. Lett. 2011, 13, 4386–4389.
(22) Cao, Q. Y.; Lee, M. H.; Zhang, J. F.; Ren, W. X.; Kim, J. S. Ferrocene-based novel electrochemical chemodosimeter for mercury ion recognition. Tetra. Lett. 2011, 52, 2786–2789.
(23) Allen, D. W.; Berridge, R.; Bricklebank, N.; Forder, S. D.; Palacio, F.; Coles, S. J.; Hursthouse, M. B.; Skabara, P. J. Structural and magnetic properties of a novel ferrocenyl-diiodine charge transfer complex. Inorg. Chem. 2003, 42, 3975–3977.
(24) Singh, A.; Chowdhury, D. R.; Paul, A. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 2014, 139, 5747–5754.
(25) Rosa, V.; Gaspari, A. P. S.; Folgosa, F.; Cordas, C. M.; Tavares, P.; Santos-Silva, T.; Barroso, S.; Avilés, T. Imine ligands based on ferrocene: synthesis, structural and Mössbauer characterization and evaluation as chromogenic and electrochemical sensors for Hg2+. New J. Chem. 2018, 42, 3334–3343.
(26) Cai, X. M.; Chen, X. F.; Zhang, X. D.; Huang, Y.; Gu, W.; Wang, F. Syntheses, crystal structures, and electrochemical properties of three anhydrides based on ferrocenecarboxylic acid and dehydroabietic acid. Chin. J. Struct. Chem. DOI: 10.14102/j.cnki.0254-5861.2011-2472.
(27) Wang, D. L.; Niu, Z. M.; Liu, H. D. Purification and characterization of optically active resolving reagent dehydroabietylamine. Transactions of Beijing Institute of Technology 2004, 24, 357–359.
(28) Lei, L.; Xie, D. H.; Song, B. L.; Jiang, J. Z.; Pei, X. M.; Cui, Z. G. Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 2017, 33, 7908–7916.
(29) Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3–8.
(30) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3–8.
(31) Cai, X. M.; Zimmermann, T. K.; Pöthig, A.; Kühn, F. E. Synthesis and electrochemical properties of cis- and trans-[Mo2(O2C-Fc)2(DArF)2] (O2C-Fc = ferrocenecarboxylate; DArF = N,N′-diarylformamidinate). Inorg. Chem. 2015, 54, 6631–6640.
(32) Cai, X. M.; Meister, T. K.; Pöthig, A.; Kühn, F. E. Filling a gap: electrochemical property comparison of the completed compound series [Mo2(DArF)n(O2C-Fc)4–n] (DArF = N,N΄-diarylformamidinate; O2C-Fc = ferrocenecarboxylate). Inorg. Chem. 2016, 55, 858–864.
(33) Cai, X. M.; Riener, K.; Herdtweck, E.; Pöthig, A.; Kühn, F. E. Rational synthesis and characterization of dimolybdenum(II) compounds bearing ferrocenyl-containing ligands toward modulation of electronic coupling. Inorg. Chem. 2015, 54, 3272–3280.
(34) Sun, L.; Gao, B. H.; Jiang, W. N.; Xu, L.; Lu, W.; Yang, S. L.; Jiang, D.; Chen, J. C.; Xue, H. Y.; Shi, J. Z. Electrochemical sensing application of isorhamnetin: detecting Hg2+ as an example. Int. J. Electrochem. Sci. 2018, 13, 4933–4945.
|