REFERENCES
(1) Cruz-Cabeza, A. J.; Allen F. H. Conformation and geometry of cyclopropane rings having -acceptor substituents: a theoretical and database study. Acta Cryst. B 2011, 67, 94–102.
(2) Hamzaoui, F.; Chouaih, A.; Lagant, P.; Belarbi, O.; Vergoten, G. A comparative X-ray diffraction study and ab initio calculation on RU60358, a new pyrethroid. Int. J. Mol. Sci. 2006, 7, 255–265.
(3) Baert, F.; Guelzim, A. X-ray structure of the pyrethroid insecticide {1R-[1α(S*),2α]}-2-(2,2-dichlorovinyl)-3,3-dimethyl cyclopropane carboxylic acid cyano(3-phenoxyphenyl) methyl ester (RU 24501). Acta Cryst. C 1991, 47, 606–608.
(4) Hamzaoui, F.; Lamiot, J.; Baert, F. X-ray structure of a new pyrethroid, RU 52259. Acta Cryst. C 1993, 49, 818–820.
(5) Brooks, I. C.; Haus, J.; Blumenthal, R. R.; Davis Jr, B. S. SBP-1382, a new synthetic pyrethroid. Soap Chem. Spec. 1969, 45, 62–64.
(6) Hill, A. S.; McAdam, D. P.; Edward, S. L.; Skerritt, J. H. Quantitation of bioresmethrin, a synthetic pyrethroid grain protectant, by enzyme immunoassay. J. Agric. Food Chem. 1993, 41, 2011–2018.
(7) Qu, J. P.; Deng, C.; Zhou, J.; Sun, X. L.; Tang, Y. Switchable reactions of cyclopropanes with enol silyl ethers. Controllable synthesis of cyclopentanes and 1,6-dicarbonyl compounds. J. Org. Chem. 2009, 74, 7684–7689.
(8) Hu, B.; Xing, S.; Ren, J.; Wang, Z. Total synthesis of (±)-bruguierol A via an intramolecular [3+2] cycloaddition of cyclopropane 1,1-diester. Tetrahedron 2010, 66, 5671–5674.
(9) Bhanot, S. K.; Singh, M.; Chatterjee, N. R. The chemical and biological aspects of fluoroquinolones reality and dreams. Curr. Pharm. Des. 2001, 7, 331–335.
(10) Boger, D. L.; Hughes, T. V.; Hedrick, M. P. Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa [c]benz[e] indol-4-one alkylation subunit. J. Org. Chem. 2001, 66, 2207–2216.
(11) Ellis, D.; Kuhen, K. L.; Anaclerio, B.; Wu, B.; Wolff, K.; Yin, H.; Bursulaya, B.; Caldwell, J.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4246–4251.
(12) Hamzaoui, F.; Baert, F. A new pyrethroid insecticide, RU41414. Acta Cryst. C 1996, 52, 689–690.
(13) Elliott, M. The relationship between the structure and the activity of pyrethroids. Bull. Wld Hlth Org. 1970, 44, 315–324.
(14) Elliott, M.; Farnham, A. W.; Janes, N. F.; Needham, P. H.; Pulman, D. A. Insecticidal activity of the pyrethrins and related compounds. Pestic. Sci. 1975, 6, 537–542.
(15) Ali, R.; Fatemeh, Z. N.; Younes, H.; Sang Woo, J.; Masoome, S.; Katarzyna, Ś.; Tadeusz, L.; Farideh, G. Synthesis, crystal structure and theoretical calculations of N-benzyl-1-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)cyclopentanamine. Chin. J. Struct. Chem. 2018, 37, 679–692.
(16) Zhai, Z. W.; Shi, Y. X.; Yang, M. Y.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J.; Zhang, Y. G. Synthesis, crystal structure, DFT studies and antifungal activity of 5-(4-cyclopropyl-5-((3-fluorobenzyl)sulfonyl)-4H-1,2,4-triazol-3-yl)-4-methyl-1,2,3-thiadiazole. Chin. J. Struct. Chem. 2016, 35, 25–33.
(17) Hooriye, Y.; Ali Reza, K.; Ali, R. Synthesis and chemical shifts calculation of -acyloxycarboxamides derived from indane-1,2,3-trione by DFT and HF methods. Chin. J. Struct. Chem. 2012, 31, 1346–1356.
(18) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
(19) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
(20) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
(21) Cohen, H. D.; Roothaan, C. C. J. Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory for closed-shell systems. J. Chem. Phys. 1965, 43, 34–39.
(22) Jamroz, M. H. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim. Acta A 2004, 114, 220–230.
(23) Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem. 1995, 99, 3093–3100.
(24) Gómez Marigliano, A. C.; Varetti, E. L. Self-association of formamide in carbon tetrachloride solutions: an experimental and quantum chemistry vibrational and thermodynamic study. J. Phys. Chem. A 2002, 106, 1100–1106.
(25) Dimitrova, Y.; Tsenov, J. A. Theoretical study of the structures and vibrational spectra of the hydrogen-bonded systems of 4-cyanophenol with N-bases. Spectrochim. Acta Part A 2007, 68, 454–459.
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02. Gaussian, Inc., Pittsburgh PA 2009.
(27) Allegretti, P. E.; Milazzo, C. B.; Castro, E. A.; Furlong J. J. P. Mass spectrometry as a valuable tool for the study of tautomerism of amides and thioamides. J. Mol. Struct. (THEOCHEM.) 2002, 589–590, 161–170.
(28) Yahiaoui, S.; Chouaih, A.; Hamzaoui, F. X-ray and DFT crystal structure determination and conformational analysis of a pyrethroid compound. Chin. J. Struct. Chem. 2013, 32, 1544–1552.
(29) Singh, H.; Singh, S.; Srivastava, A.; Tandon, P.; Bharti, P.; Kumar, S.; Maurya, R. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2014, 120, 405–415.
(30) Tessier, J.; Teche, A.; Demoute, J. P. Proceedings of the 5th IUPAC International Congress of Pesticide Chemistry. J. Miyamoto, P. C. Kearney, Ed., Pergamon Press: Oxford, New York 1983, 197–202.
(31) Tessier, J.; Teche, A.; Demoute, J. P. Pesticide Chemistry: Human Welfare and the Environment. J. Miyamoto, P. C. Kearney Ed., Pergamon Press: Oxford, New York 1983, 1, 95–100.
(32) Sharma, A.; Jad, Y. E.; Ghabbour, H. A.; De la Torre, B. G.; Kruger, H. G.; Albericio, F.; El-Faham, A. Synthesis, crystal structure and DFT studies of 1,3-dimethyl-5-propionylpyrimidine-2,4,6(1H,3H,5H)-trione. Crystals 2017, 7, 31–40.
(33) Silverstein, M.; Bassler, G. C.; Morril, C. Spectroscopic Identification of Organic Compounds. John Wiley: New York 1981.
(34) Subashchandrabose, S.; Saleem, H.; Erdogdu, Y.; Dereli, O.; Thanikachalam, V.; Jayabharathi, J. Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2012, 86, 231–241.
(35) Varsanyi, G. Assignment for Vibrational Spectra of Seven Hundred Benzene Derivatives. Academic Kiaclo: Budapest 1973.
(36) Sortur, V.; Yenagi, J.; Tonannavar, J.; Jadhav, V. B.; Kulkarni, M. V. Vibrational assignments for 7-methyl-4-bromomethylcoumarin, as aided by RHF and B3LYP/6-31G* calculations. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 2008, 71, 688–694.
(37) Risgin, J. H. Fluorocarbons and related compounds, Vol. II. Academic press: New York 1954, 449–452.
(38) Shakila, G.; Saleem H.; Sundaraganesan, N. FT-IR, FT-Raman, NMR and U-V spectral investigation: computation of vibrational frequency, chemical shifts and electronic structure calculations of 1-bromo-4-nitrobenzene. World Scientific News 2017, 61, 150–185.
(39) Seminario, J. M. Recent Developments and Applications of Modern Density Functional Theory, Vol. 4. Elsevier 1996, pp. 800–806.
(40) Parr, R. G.; Pearson, R. G. Absolute hardness: comparison parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516.
(41) Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 1955, 23 1833–1840.
(42) Drissi, M.; Benhalima, N.; Megrouss, Y.; Rahmani, R.; Chouaih, A.; Hamzaoui, F. Theoretical and experimental electrostatic potential around the m-nitrophenol molecule. Molecules 2015, 20, 4042–4054.
(43) Megrouss, Y.; Benhalima, N.; Bahoussi R.; Boukabcha, N.; Chouaih, A.; Hamzaoui, F. Determination of electrostatic parameters of a coumarin derivative compound C17H13NO3 by X-ray and density functional theory. Chin. Phys. B 2015, 24, 106103–7.
(44) Boubegra, N.; Chouaih, A.; Drissi, M.; Hamzaoui, F. Structural and electron charge density studies of a nonlinear optical compound 4,4 di-methyl amino cyano biphenyl. Chin. Phys. B 2014, 23, 016103–6.
|