REFERENCES
(1) Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.
(2) Talirz, L.; Sde, H.; Kawai, S.; Ruffieux, P.; Meyer, E.; Feng, X. L.; Mllen, K.; Fasel, R.; Pignedoli, C. A.; Passerone, D. Band gap of atomically precise graphene nanoribbons as a function of ribbon length and termination. Chemphyschem 2019, 20, 2348–2353.
(3) Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8- and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.
(4) Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y.; Mullen, K.; Fuchs, H.; Chi, L. F. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.
(5) Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.
(6) Beyer, D.; Wang, S. Y.; Pignedoli, C. A.; Melidonie, J.; Yuan, B. K.; Li, C.; Wilhelm, J.; Ruffieux, P.; Berger, R.; Mullen, K.; Fasel, R.; Feng, X. L. Graphene nanoribbons derived from zigzag edge-encased poly(para–2,9-dibenzo[bc,kl]coronenylene) polymer chains. J. Am. Chem. Soc. 2019, 141, 4488–4488.
(7) Ruffieux, P.; Wang, S. Y.; Yang, B.; Sanchez-Sanchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D.; Dumslaff, T.; Feng, X. L.; Mullen, K.; Fasel, R. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.
(8) Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Mullen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.
(9) Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.
(10) Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.
(11) Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.
(12) Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.
(13) Wang, X. Y.; Dienel, T.; Di Giovannantonio, M.; Barin, G. B.; Kharche, N.; Deniz, O.; Urgel, J. I.; Widmer, R.; Stolz, S.; De Lima, L. H.; Muntwiler, M.; Tommasini, M.; Meunier, V.; Ruffieux, P.; Feng, X. L.; Fasel, R.; Mullen, K.; Narita, A. Heteroatom-doped perihexacene from a double helicene precursor: on-surface synthesis and properties. J. Am. Chem. Soc. 2017, 139, 4671–4674.
(14) Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.
(15) Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, A.; Sinitskii, A. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chem. Commun. 2017, 53, 8463–8466.
(16) Carbonell-Sanroma, E.; Hieulle, J.; Vilas-Varela, M.; Brandimarte, P.; Lraola, M.; Barragan, A.; Li, J. C.; Abadia, M.; Corso, M.; Sanchez-Portal, D.; Pena, D.; Pascual, J. I. Doping of graphene nanoribbons via functional group edge modification. ACS Nano 2017, 11, 7355–7361.
(17) Marangoni, T.; Haberer, D.; Rizzo, D. J.; Cloke, R. R.; Fischer, F. R. Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons. Chem.-Eur. J. 2016, 22, 13037–13040.
(18) Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Mullen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.
(19) Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Bottom-up synthesis of n = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.
(20) Wang, X. Y.; Yao, X. L.; Narita, A.; Mullen, K. Heteroatom-doped nanographenes with structural precision. Acc. Chem. Res. 2019, 52, 2491–2505.
(21) Liu, M. Z.; Liu, M. X.; Zha, Z. Q.; Pan, J. L.; Qiu, X. H.; Li, T.; Wang, J. B.; Zheng, Y.; Zhong, D. Y. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 2018, 122, 9586–9592.
(22) Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.
(23) Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J. I.; Ruffieux, P.; Narita, A.; Fasel, R.; Müllen, K. On-surface synthesis of unsaturated carbon nanostructures with regularly fused pentagon-heptagon pairs. J. Am. Chem. Soc. 2020, 142, 10291–10296.
(24) Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Mullen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.
(25) Majzik, Z.; Pavlicek, N.; Vilas-Varela, M.; Perez, D.; Moll, N.; Guitian, E.; Meyer, G.; Pena, D.; Gross, L. Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces. Nat. Commun. 2018, 9, 1198.
(26) Riss, A.; Wickenburg, S.; Gorman, P.; Tan, L. Z.; Tsai, H. Z.; de Oteyza, D. G.; Chen, Y. C.; Bradley, A. J.; Ugeda, M. M.; Etkin, G.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano. Lett. 2014, 14, 2251–2255.
(27) Liu, M. Z.; Liu, M. X.; She, L. M.; Zha, Z. Q.; Pan, J. L.; Li, S. C.; Li, T.; He, Y. Y.; Cai, Z. Y.; Wang, J. B.; Zheng, Y.; Qiu, X. H.; Zhong, D. Y. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat. Commun. 2017, 8, 14924.
(28) Kawai, S.; Takahashi, K.; Ito, S.; Pawlak, R.; Meier, T.; Spijker, P.; Canova, F. F.; Tracey, J.; Nozaki, K.; Foster, A. S.; Meyer, E. Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy. ACS Nano 2017, 11, 8122–8130.
(29) Cho, J.; Smerdon, J.; Gao, L.; Suzer, O.; Guest, J. R.; Guisinger, N. P. Structural and electronic decoupling of c–60 from epitaxial graphene on sic. Nano. Lett. 2012, 12, 3018–3024.
(30) Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.
(31) Zheng, Y. J.; Huang, Y. L.; Chenp, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z.; Quek, S. Y.; Wee, A. T. S. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476–2484.
(32) Liu, Z. H.; Sun, K. W.; Li, X. C.; Li, L.; Zhang, H. M.; Chi, L. F. Electronic decoupling of organic layers by a self-assembled supramolecular network on au(111). J. Phys. Chem. Lett. 2019, 10, 4297–4302.
(33) Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.
(34) Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808
(35) Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Mullen, K.; Lin, X.; Zhang, Y. Y.; Du, S. X.; Pantelides, S. T.; Gao, H. J. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384
(36) Bronner, C.; Leyssner, F.; Stremlau, S.; Utecht, M.; Saalfrank, P.; Klamroth, T.; Tegeder, P. Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: end states, band gap, and dispersion. Phys. Rev. B 2012, 86, 085444.
(37) Kleimeier, N. F.; Timmer, A.; Bignardi, L.; Monig, H.; Feng, X. L.; Mullen, K.; Chi, L. F.; Fuchs, H.; Zacharias, H. Electron dynamics in unoccupied states of spatially aligned 7-a graphene nanoribbons on au(788). Phys. Rev. B 2014, 90, 245408.
(38) Linden, S.; Zhong, D.; Timmer, A.; Aghdassi, N.; Franke, J. H.; Zhang, H.; Feng, X.; Mullen, K.; Fuchs, H.; Chi, L.; Zacharias, H. Electronic structure of spatially aligned graphene nanoribbons on au(788). Phys. Rev. Lett. 2012, 108, 216801.
(39) Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotech. 2015, 10, 156–160.
(40) Mishra, S.; Lohr, T. G.; Pignedoli, C. A.; Liu, J. Z.; Berger, R.; Urgel, J. I.; Mullen, K.; Feng, X. L.; Ruffieux, P.; Fasel, R. Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano 2018, 12, 11917–11927.
(41) Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.; Mullen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152.
(42) Merino-Diez, N.; Garcia-Lekue, A.; Carbonell-Sanroma, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sanchez-Portal, D.; Pascual, J. I.; de Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on au(111). ACS Nano 2017, 11, 11661–11668.
(43) Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Mullen, K.; Pignedoli, C. A.; Fasel, R. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6, 6930–6935.
(44) Huang, H.; Chen, S.; Gao, X. Y.; Chen, W.; Wee, A. T. S. Structural and electronic properties of ptcda thin films on epitaxial graphene. ACS Nano 2009, 3, 3431–3436.
(45) Liu, L. W.; Dienel, T.; Widmer, R.; Groning, O. Interplay between energy-level position and charging effect of manganese phthalocyanines on an atomically thin insulator. ACS Nano 2015, 9, 10125–10132.
(46) Wang, S. Y.; Talirz, L.; Pignedoli, C. A.; Feng, X. L.; Mullen, K.; Fasel, R.; Ruffieux, P. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 2016, 7, 11507.
(47) Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y.; Yamada, H.; Sato, S. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun. Mater. 2020, 1, DOI 10.1038/s43246-020-0039-9.
(48) Sakaguchi, H.; Kawagoe, Y.; Hirano, Y.; Iruka, T.; Yano, M.; Nakae, T. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 2014, 26, 4134–4138.
(49) Narita, A.; Chen, Z. P.; Chen, Q.; Mullen, K. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chem. Sci. 2019, 10, 964–975.
(50) Sakaguchi, H.; Song, S. T.; Kojima, T.; Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 2017, 9, 57–63.
(51) Song, S. T.; Kojima, T.; Nakae, T.; Sakaguchi, H. Wide graphene nanoribbons produced by interchain fusion of poly(p-phenylene) via two-zone chemical vapor deposition. Chem. Commun. 2017, 53, 7034–7036.
(52) Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; de Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114.
(53) Chen, Z. P.; Zhang, W.; Palma, C. A.; Rizzini, A. L.; Liu, B. L.; Abbas, A.; Richter, N.; Martini, L.; Wang, X. Y.; Cavani, N.; Lu, H.; Mishra, N.; Coletti, C.; Berger, R.; Klappenberger, F.; Klaui, M.; Candini, A.; Affronte, M.; Zhou, C. W.; De Renzi, V.; del Pennino, U.; Barth, J. V.; Rader, H. J.; Narita, A.; Feng, X. L.; Mullen, K. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 2016, 138, 15488–15496.
(54) Kojima, T.; Bao, Y.; Zhang, C.; Liu, S. L.; Xu, H.; Nakae, T.; Loh, K. P.; Sakaguchi, H. Orientation and electronic structures of multilayered graphene nanoribbons produced by two-zone chemical vapor deposition. Langmuir 2017, 33, 10439–10445.
(55) Ohtomo, M.; Sekine, Y.; Hibino, H.; Yamamoto, H. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from au(788). Appl. Phys. Lett. 2018, 112, 021602.
(56) Liu, Y.; Wang, X. Z.; Dong, Y. F.; Wang, Z. Y.; Zhao, Z. B.; Qiu, J. S. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 16832–16835.
(57) Liu, M. K.; Song, Y. F.; He, S. X.; Tjiu, W. W.; Pan, J. S.; Xia, Y. Y.; Liu, T. X. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. Acs Appl. Mater. Inter. 2014, 6, 4214–4222.
|