REFERENCES
(1) Tan, J. C.; Saines, P. J.; Bithell, E. G.; Cheetham, A. K. Hybrid nanosheets of an inorganic-organic framework material: facile synthesis, structure, and elastic properties. ACS Nano 2011, 6, 615–621.
(2) Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Three-dimensional chiral microporous germanium antimony sulfide with ion-exchange properties. Angew. Chem. Int. Ed. 2008, 47, 8623–8626.
(3) Dincă, M.; Long, J. R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 2008, 47, 6766–6779.
(4) Aakeröy, C. B.; Champness, N. R.; Janiak, C. Recent advances in crystal engineering. CrystEngComm. 2010, 12, 22–43.
(5) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
(6) O'Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
(7) Wang, Y. Q.; Zhang, J. Y.; Jia, Q. X.; Gao, E. Q.; Liu, C. M. Unprecedented self-catenated eight-connected network based on novel azide-bridged tetramanganese(II) clusters. Inorg. Chem. 2009, 48, 789–791.
(8) Custelcean, R. Anions in crystal engineering. Chem. Soc. Rev. 2010, 39, 3675–85.
(9) Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. The MOF+ technique: a significant synergic effect enables high performance chromate removal. Angew. Chem. Int. Ed. 2017, 56, 16376–16379.
(10) Wang, C.; Li, L.; Bell, J. G.; Lv, X. X.; Tang, S. F.; Zhao, X. B.; Thomas, K. M. Hysteretic gas and vapor sorption in flexible interpenetrated lanthanide-based metal-organic frameworks with coordinated molecular gating via reversible single-crystal-to-single-crystal transformation for enhanced. Chem. Mater. 2015, 27, 1502–1516.
(11) Qiu, W.; Perman, J. A.; Wojtas, Ł.; Perman, J. A.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Structural diversity through ligand flexibility: two novel metal-organic nets via ligand-to-ligand cross-linking of “paddlewheels”. Chem. Commun. 2010, 46, 8734–8736.
(12) He, X.; Lu, X. P.; Ju, Z. F.; Li, C. J.; Zhang, Q. K.; Li, M. X. Syntheses, structures, and photoluminescent properties of ten metal-organic frameworks constructed by a flexible tetracarboxylate ligand. CrystEngComm. 2013, 15, 2731–2744.
(13) Manna, P.; Tripuramallu, B. K.; Bommakanti, S.; Das, S. K. Synthesis, characterization and magnetism of metal-organic compounds: role of the positions of the coordinating groups of a meso-flexible ligand in placing anisotropy to exhibit spin-canting behavior. Dalton Trans. 2015, 44, 2852–2864.
(14) Lu, S. Q.; Liu, Y. Y.; Duan, Z. M.; Wang, Z. X.; Li, M. X.; He, X. Improving water-stability and porosity of lanthanide metal-organic frameworks by stepwise synthesis for sensing and removal of heavy metal ions. Cryst. Growth Des. 2018, 7, 268–274.
(15) Wang, C.; Tang, S. F.; Lv, X. X.; Li, L. J.; Zhao, X. B. Zinc metal-organic frameworks based on a flexible benzylaminetetracarboxylic acid and bipyridine colinkers. Eur. J. Inorg. Chem. 2014, 2014, 3133–3139.
(16) Jiang, K.; Ma, L. F.; Sun, X. Y.; Wang, L. Y. Syntheses, structures and luminescent properties of zinc(II) coordination polymers based on bis(imidazole) and dicarboxylate. CrystEngComm. 2011, 13, 330–338.
(17) Qi, Y.; Wang, Y. Five new Mn(II) complexes based on flexible bis(imidazole) ligands: synthesis, structure and magnetic properties. Polyhedron 2014, 73, 133–138.
(18) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
(19) Sheldrick, G. M. SHELXTL-2014. Program for Crystal Structure Refinement. University of Gӧttingen, Germany 2014.
(20) Zhu, Q. L.; Sheng, T. L.; Fu, R. B.; Hu, S. M.; Shen, C. J.; Ma, X.; Wu, X. T. Syntheses, structural aspects, luminescence and magnetism of four coordination polymers based on a new flexible polycarboxylate. CrystEngComm. 2011, 13, 2096–2105.
(21) Cao, L. H.; Li, H. Y.; Zang, S. Q.; Hou, H. W.; Mak, T. C. W. (4,4)-Connected self-penetrating pillared-layered metal-organic framework based on a nanosized flexible aromatic carboxylic acid ligand. Cryst. Growth Des. 2012, 12, 4299–4301.
(22) Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. Underlying nets in three-periodic coordination polymers: topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm. 2011, 13, 3947–3958.
(23) Fan, L. M.; Fan, W. L.; Li, B.; Liu, X. Z.; Zhao, X.; Zhang, X. T. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3΄,5,5΄-azobenzenetetracarboxylic acid. Dalton Trans. 2015, 44, 2380–2389.
(24) Wei, X. J.; Liu, D.; Li, Y. H.; Cui, G. H. Two Zn(II) coordination polymers based on 5-substituted isophthalic acid: syntheses, crystal structures, luminescence sensing properties. Polyhedron 2019, 158, 357–364.
(25) Wei, X. J.; Li, Y. H.; Qin, Z. B.; Cui, G. H. Two zinc(II) coordination polymers for selective luminescence sensing of iron(III) ions and photocatalytic degradation of methylene blue. J. Mol. Struct. 2019, 1175, 253–260.
(26) Singh, D.; Nagaraja, C. M. A luminescent 3D interpenetrating metal-organic framework for highly selective sensing of nitrobenzene. Dalton Trans. 2014, 43, 17912–17915.
|