REFERENCES
(1) Khillare1, L. D.; Pratap1, U. R.; Bhosle1, M. R.; Dhumal1, S. T.; Bhalerao1, M. B.; Mane, R. A. Syntheses of biodynamic heterocycles: baker’s yeast-assisted cyclocondensations of organic nucleophiles and phenacyl chlorides. Res. Chem. Intermed. 2017, 43, 4327–4337.
(2) Kattimani, P. P.; Kamble, R. R.; Dorababu, A.; Hunnur, R. K.; Kamble, A. A.; Devarajegowda, H. C. C5-alkyl-1,3,4-oxadiazol-2-ones undergo dealkylation upon nitrogen insertion to form 2H-1,2,4-triazol-3-ones: synthesis of 1,2,4-triazol-3-one hybrids with triazolothiadiazoles and triazolothiadiazines. J. Heterocycl. Chem. 2017, 54, 2258–2265.
(3) Hamama, W. S.; Ibrahim, M. E.; Ghaith, E. A.; Zoorob, H. H. Peculiar reaction chemical reactivity behavior of 1,3-oxathiolane-5-one towards various reagents: assisted by molecular modeling studies and in vitro antioxidant and cytotoxicity evaluation. Synth. Commun. 2017, 47, 566–580.
(4) Aouad, M. R.; Al-Saedi, A. M. H.; Ali, A. A.; Rezki, N.; Messali, M. Preparation of novel 3-fluorophenyl triazolothiadiazoles and of triazolothiadiazines. Org. Prep. Proced. Int. 2016, 48, 355–370.
(5) Nikpour, M.; Motamedi, H. Сonvenient access to 1,3-dimethyl[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazol-1-ium and 7H-[1,2,4]triazolo[4,3-b][1,2,4]-
triazol-1-ium salts. Chem. Heterocycl. Compd. 2015, 51, 159–161.
(6) Aly, H. M.; Moustafa, M. E.; Nassar, M. Y.; Abdelrahman, E. A. Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 2015, 1086, 223–231.
(7) Nami, N.; Zareyee, D.; Ghasemi, M.; Asgharzadeh, A.; Forouzanib, M.; Mirzad, S.; Hashemi, S. M. An efficient method for synthesis of some heterocyclic compounds containing 3-iminoisatin and 1,2,4-triazole using Fe3O4 magnetic nanoparticles. J. Sulfur Chem. 2017, 38, 279–290.
(8) Li, Z. Q.; Bai, X. G.; Deng, Q.; Zhang, G. N.; Zhou, L.; Liu, Y. S.; Wang, J. X.; Wang, Y. C. Preliminary SAR and biological evaluation of antitubercular triazolothiadiazine derivatives against drug-susceptible and drugresistant Mtb strains. Bioorg. Med. Chem. 2017, 25, 213–220.
(9) Iradyan, M. A.; Iradyan, N. S.; Minasyan, N. S.; Paronikyan, R. V.; Stepanyan, G. M. Synthesis and antibacterial activity of 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. Pharm. Chem. J. 2016, 50, 10–15.
(10) Morsy, R. M. I.; Salem, O. I. A.; Abdel-Moty, S. G.; Kafafy, A. H. N. Synthesis, molecular modeling study and anti-inflammatory activity of novel benzimidazole derivatives with promising cyclooxygenase inhibitory properties. Pharma Chemica 2016, 8, 213–231.
(11) Sever, B.; Altıntop, M. D.; Kuş, G.; Özkurt, M.; Özdemir, A.; Kaplancıklı, Z. A. Indomethacin based new triazolothiadiazine derivatives: synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur. J. Med. Chem. 2016, 113, 179–186.
(12) Aytaç, P. S.; Durmaz, I.; Houston, D. R.; Cetin-Atalay, R.; Tozkoparan, B. Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins. Bioorg. Med. Chem. 2016, 24, 858–872.
(13) Ibrar, A.; Zaib, S.; Jabeen, F.; Iqbal, J.; Saeed, A. Unraveling the alkaline phosphatase inhibition, anticancer, and antileishmanial potential of coumarin-triazolothiadiazine hybrids: design, synthesis, and molecular docking analysis. Arch. Pharm. Chem. Life Sci. 2016, 349, 1–13.
(14) Winton, V. J.; Aldrich, C.; Kiessling, L. L. Carboxylate surrogates enhance the antimycobacterial activity of UDP-galactopyranose mutase probes. ACS Infect. Dis. 2016, 2, 538–543.
(15) Khan, I.; Hameed, S.; Al-Masoudi, N. A.; Abdul-Reda, N. A.; Simpson, J. New triazolothiadiazole and triazolothiadiazine derivatives as kinesin Eg5 and HIV inhibitors: synthesis, QSAR and modeling studies. Z. Naturforsch. 2015, 70, 47–58.
(16) Awad, I. M. A.; Rahman, A. E. A.; Bakite, E. A. Synthesis and application of some new heterocyclo-s-triazole derivatives as antimicrobial agents. J. Clirrn. Tech. Bioteclniol. 1991, 51, 483–495.
(17) Zhang, B.; Li, Y. H.; Liu, Y.; Chen, Y. R.; Pan, E. S.; You, W. W.; Zhao, P. L. Design, synthesis and biological evaluation of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines bearing furan and thiophene nucleus. Eur. J. Med. Chem. 2015, 103, 335–342.
(18) Al-Etaibi, A.; John, E.; Ibrahim, M. R.; Al-Awadi, N. A.; Ibrahim, Y. A. Stereoselective synthesis of dihydrothiadiazinoazines and dihydrothiadiazinoazoles and their pyrolytic desulfurization ring contraction. Tetrahedron 2011, 67, 6259–6274.
(19) Gaponenko, N. I.; Kolodina, A. A.; Lesin, A. V.; Kurbatov, S. V.; Starikova, Z. A.; Nelyubina, Y. V. Synthesis of spiro[indole- 3,3´-[1,3,4]thiadiazino[3,2-a]benzimidazoles] and spiro[indole-3,6´-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines]. Russ. Chem. Bull. Int. Ed. 2010, 59, 838–844.
(20) Kolodina, A. A.; Lesin, A. V. Intramolecular cyclization of 4-amino-3-alkylsulfanyl-1,2,4-triazoles as a method for annelation of thiadiazine and thiadiazole rings. Russ. J. Org. Chem. 2009, 45, 139–145.
(21) Ibrahim, Y. A.; Elwahy, A. H. M.; El-Fiky, A. E. M. Stereospecific synthesis of 6,7-dihydro-5H-1,2,4-triazolo[3,4-b] [1,3,4]thiadiazines. Heteroat. Chem. 1994, 5, 321–325.
(22) Molina, P.; Alajarin, M.; De Vega, M. J. P. Synthesis of 6,7-dihydro-5H-1,2,4-triazoIo[3,4-b][1,3,4]thiadiazines by a C–C ring cyclization under mild conditions. J. Chem. Soc. Perkin Trans. I. 1987, 1853–1860.
(23) Ding, Q. C.; Dai, S. D.; Zhang, L. X. Crystal structure of 3,6-diphenyl-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazine, C16H12N4S. Z. Kristallogr. New Cryst. Struct. 2018, 233, 849–851.
(24) Ding, Q. C.; Zhang, L. X.; Zhang, H. L. Synthesis and biological activities of some novel triazolothiadiazines and Schiff bases derived from 4-amino-3-(4-hydroxyphenyl)-1H-1,2,4-triazole-5(4H)-thione. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 567–572.
(25) Ding, Q. C.; Lei, X. X.; Jin, J. Y.; Zhang, L. X.; Du, H. A.; Zhang, H. L. Synthesis and structure of novel 1,2,4-triazole derivatives containing the 2,4-dinitrophenylthio group. J. Chem. Res. 2009, 114–119.
(26) Parmar, K. A.; Patel, R. P.; Prajapati, S. N.; Joshi, S. A. A versatile approach for the synthesis of some new [1,2,4] triazolo derivatives of 1,3,4 thiadiazine and their biological activities. J. Ultra Chem. 2011, 7, 21–28.
(27) Miao, R. D.; Wei, J.; Lv, M. H.; Cai, Y.; Du, Y. P.; Hui, X. P.; Wang, Q. Conjugation of substituted ferrocenyl to thiadiazine as apoptosis-inducing agents targeting the Bax/Bcl-2 pathway. Eur. J. Med. Chem. 2011, 46, 5000–5009.
(28) Baeeri, M.; Foroumadi, A.; Motamedi, M.; Yahya-Meymandi, A.; Firoozpour, L.; Ostad, S. N.; Shafiee, A.; Souzangarzadeh, S.; Abdollahi, M. Safety and efficacy of new 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine analogs as potential phosphodiesterase-4 inhibitors in NIH-3T3 mouse fibroblastic cells. Chem. Biol. Drug Des. 2011, 78, 438–444.
(29) Zhang, L. X.; Zhang, A. J.; Hu, M. L.; Lei, X. X.; Xu, Z. X.; Zhang, Z. Y. Synthesis and crystal structure of 3-phenoxymethyl- 6-(2,4-difluorophenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine. Acta Chim. Sin. 2003, 61, 917–921.
(30) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(31) Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Cryst. 2015, A71, 59–75.
|