REFERENCES
(1) Li, J. H.; Liang, X.; Xu, S. C.; Hao, J. M. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Appl. Catal. B-Environ. 2009, 90, 307312.
(2) Matthiesen, J.; Smith, R. S.; Kay, B. D. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. II. Diffusion of Ar, Kr, Xe, and CH4 through methanol. J. Chem. Phys. 2010, 133, 17450511.
(3) Wada, A.; Mochizuki, N.; Hiraoka, K. Methanol formation from electron-irradiated mixed H2O/CH4 ice at 10 K. Astrophys. J. 2006, 644, 300306.
(4) Wu, J. J.; Qin, S.; Hu, C. W. Na2WO4/Co-Mn/SiO2 catalyst for the simultaneous production of ethylene and syngas from CH4. Catal. Lett. 2007, 118, 285289.
(5) Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba, A.; Specchia, V. Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today 2015, 257, 6671.
(6) Lashof, D. A.; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529531.
(7) Rubin, E. S.; Cooper, R. N.; Frosch, R. A.; Lee, T. H.; Marland, G.; Rosenfeld, A. H.; Stine, D. D. Realistic mitigation options for global warming. Science 1992, 257, 148266.
(8) Alvarez, R. A.; Pacala, S. W.; Winebrake, J. J.; Chameides, W. L.; Hamburg, S. P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 64356440.
(9) Schmale, J.; Shindell, D.; von Schneidemesser, E.; Chabay, I.; Lawrence, M. Clean up our skies. Nature 2014, 515, 335337.
(10) Gelin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl. Catal. B-Environ. 2002, 39, 137.
(11) Zarur, A. J.; Ying, J. Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000, 403, 6567.
(12) Zou, X. L.; Rui, Z. B.; Ji, H. B. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation. Acs. Catal. 2017, 7, 16151625.
(13) Beck, I. E.; Bukhtiyarov, V. I.; Pakharukov, I. Y.; Zaikovsky, V. I.; Kriventsov, V. V.; Parmon, V. N. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J. Catal. 2009, 268, 6067.
(14) Xie, S. H.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Zhang, K. F.; Han, Z.; Arandiyan, H.; Dai, H. X. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B-Environ. 2017, 206, 221232.
(15) Willis, J. J.; Goodman, E. D.; Wu, L.; Riscoe, A. R.; Martins, P.; Tassone, C. J.; Cargnello, M. Systematic identification of promoters for methane oxidation catalysts using size and composition-controlled Pd-based bimetallic nanocrystals. J. Am. Chem. Soc. 2017, 139, 1198911997.
(16) Tao, F. F.; Shan, J. J.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu, Z.; Huang, W.; Zeng, S.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 779810.
(17) Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of metal-oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 2013, 135, 1542515442.
(18) Weng, X. F.; Ren, H. J.; Chen, M. S.; Wan, H. L. Effect of surface oxygen on the activation of methane on palladium and platinum surfaces. Acs. Catal. 2014, 4, 25982604.
(19) Mahara, Y.; Ohyama, J.; Tojo, T.; Murata, K.; Ishikawa, H.; Satsuma, A. Enhanced activity for methane combustion over a Pd/Co/Al2O3 catalyst prepared by a galvanic deposition method. Catal. Sci. Technol. 2016, 6, 47734776.
(20) Abbasi, R.; Huang, G. Y.; Istratescu, G. M.; Wu, L.; Hayes, R. E. Methane oxidation over Pt, Pt:Pd, and Pd based catalysts: effects of pre-treatment. Can. J. Chem. Eng. 2015, 93, 14741482.
(21) Zhang, Z. S.; Li, J. W.; Yi, T.; Sun, L. W.; Zhang, Y. B.; Hu, X. F.; Cui, W. H.; Yang, X. G. Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation. Chin. J. Catal. 2018, 39, 12281239.
(22) Zhao, C. C.; Zhao, Y. H.; Li, S. G.; Sun, Y. H. Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations. Chin. J. Catal. 2017, 38, 813820.
(23) Liu, R. Y.; Yang, M. H.; Huang, C. J.; Weng, W. Z.; Wan, H. L. Partial oxidation of methane to syngas over mesoporous Co-Al2O3 catalysts. Chin. J. Catal. 2013, 34, 146151.
(24) Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 40344041.
(25) Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 2013, 135, 34943501.
(26) Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 1145211464.
(27) Hu, W. D.; Lan, J. G.; Guo, Y.; Cao, X. M.; Hu, P. Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites. Acs Catal. 2016, 6, 55085519.
(28) Zasada, F.; Piskorz, W.; Janas, J.; Grybos, J.; Indyka, P.; Sojka, Z. Reactive oxygen species on the (100) facet of cobalt spinel nanocatalyst and their relevance in 16O2/ 18O2 isotopic exchange, deN2O, and deCH4 processes-a theoretical and experimental account. Acs. Catal. 2015, 5, 68796892.
(29) Zasada, F.; Piskorz, W.; Sojka, Z. Cobalt spinel at various redox conditions: DFT plus U investigations into the structure and surface thermodynamics of the (100) facet. J. Phys. Chem. C 2015, 119, 1918019191.
(30) Liotta, L. F.; Wu, H. J.; Pantaleo, G.; Venezia, A. M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal. Sci. Technol. 2013, 3, 30853102.
(31) Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 1311513118.
(32) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1116911186.
(33) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 1550.
(34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(35) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 17871799.
(36) Krcha, M. D.; Janik, M. J. Examination of oxygen vacancy formation in Mn-doped CeO2(111) using DFT plus U and the hybrid functional HSE06. Langmuir 2013, 29, 1012010131.
(37) Sheppard, D.; Xiao, P.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 0741038.
(38) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 2008, 128, 13410610.
(39) Wang, J. F.; Deng, L. J.; Zhu, G.; Kang, L. P.; Lei, Z. B.; Liu, Z. H. Fluoride anions-assisted hydrothermal preparation and growth process of beta-MnO2 with bipyramid prism morphology. Crystengcomm 2013, 15, 66826689.
(40) Yao, W. T.; Odegard, G. M.; Huang, Z. N.; Yuan, Y. F.; Asayesh-Ardakani, H.; Sharifi-Asl, S.; Cheng, M.; Song, B.; Deivanayagam, R.; Long, F.; Friedrich, C. R.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Cations controlled growth of beta-MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy 2018, 48, 301311.
(41) Su, D. W.; Ahn, H. J.; Wang, G. X. b-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. Npg Asia Mater. 2013, 5, e707.
|