REFERENCES
(1) Dinh, K. N.; Liang, Q.; Du, C. F.; Zhao, J.; Tok, A. I. Y.; Mao, H.; Yan, Q. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano. Today 2019, 25, 99121.
(2) Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44126.
(3) Mortazavi, B.; Dianat, A.; Cuniberti, G.; Rabczuk, T. Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim. Acta 2016, 213, 865870.
(4) Oughaddou, H.; Enriquez, H.; Tchalala, M. R.; Yildirim, H.; Mayne, A. J.; Bendounan, A.; Dujardin, G.; Ait Ali, M.; Kara, A. Silicene, a promising new 2D material. Prog. Surf. Sci. 2015, 90, 4683.
(5) Zhuang, J.; Xu, X.; Feng, H.; Li, Z.; Wang, X.; Du, Y. Honeycomb silicon: a review of silicene. Sci. Bull. 2015, 60, 15511562.
(6) Ali, M.; Ni, Z.; Cottenier, S.; Liu, Y.; Pi, X.; Yang, D. Formation, structures and electronic properties of silicene oxides on Ag(111). J. Mater. Sci. Technol. 2016, 33, 751757.
(7) Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C. C.; Zhong, H.; Han, N.; Lu, J.; Yao, Y.; Wu, K. Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 2016, 83, 24151.
(8) Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M. H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 63706387.
(9) Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286289.
(10) Ni, Z.; Minamitani, E.; Ando, Y.; Watanabe, S. The electronic structure of quasi-free-standing germanene on monolayer MX (M = Ga, In; X = S, Se, Te). Phys. Chem. Chem. Phys. 2015, 17, 1903919044.
(11) Sa, B.; Li, Y. L.; Qi, J.; Ahuja, R.; Sun, Z. Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C 2014, 118, 2656026568.
(12) Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372377.
(13) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699712.
(14) Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 3199410.
(15) Guo, Z.; Zhou, J.; Zhu, L.; Sun, Z. MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 2016, 4, 1144611452.
(16) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. MXenes: a new family of two-dimensional materials. Adv. Mater. 2014, 26, 982982.
(17) Rehman, G.; Khan, S. A.; Amin, B.; Ahmad, I.; Gan, L. Y.; Maqbool, M. Intriguing electronic structures and optical properties of two-dimensional van der Waals heterostructures of Zr2CT2 (T = O, F) with MoSe2 and WSe2. J. Mater. Chem. C 2018, 6, 28302839.
(18) Sone, J.; Yamagami, T.; Aoki, Y.; Nakatsuji, K.; Hirayama, H. Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 2012, 16, 09500415.
(19) Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W. Buckled silicene formation on Ir(111). Nano. Lett. 2013, 13, 685690.
(20) Cherukara, M. J.; Narayanan, B.; Chan, H.; Skrs, S. Silicene growth through island migration and coalescence. Nanoscale 2017, 9, 10.1039.C1037NR03153J, 1018610192.
(21) Aizawa, T.; Suehara, S.; Otani, S. Silicene on zirconium carbide (111). J. Phys. Chem. C 2014, 118, 2304923057.
(22) Gill, T. G.; Fleurence, A.; Warner, B.; Prüser, H.; Friedlein, R.; Sadowski, J. T.; Hirjibehedin, C. F.; Yamadatakamura, Y. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2. 2D Mater. 2017, 4, 0210157.
(23) Feng, J. W.; Liu, Y. J.; Wang, H. X.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z. Gas adsorption on silicene: a theoretical study. Comp. Mater. Sci. 2014, 87, 218226.
(24) Wei, H.; Nan, X.; Xiaojun, W.; Zhenyu, L.; Jinlong, Y. Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys. Chem. Chem. Phys. 2014, 16, 69576962.
(25) Chandiramouli, R.; Srivastava, A.; Nagarajan, V. NO adsorption studies on silicene nanosheet: DFT investigation. Appl. Surf. Sci. 2015, 351, 662672.
(26) Ni, Z.; Zhong, H.; Jiang, X.; Quhe, R.; Luo, G.; Wang, Y.; Ye, M.; Yang, J.; Shi, J.; Lu, J. Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 2014, 6, 76097618.
(27) Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227231.
(28) Le Lay, G. Silicene transistors. Nat. Nanotechnol. 2015, 10, 202203.
(29) Yang, K.; Cahangirov, S.; Cantarero, A.; Rubio, A.; D'Agosta, R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 2014, 89, 12540313.
(30) Wierzbicki, M.; Barnaś, J.; Swirkowicz, R. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties. J. Phys. Condens. Mat. 2015, 27, 48530114.
(31) Jose, D.; Datta, A. Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 2011, 13, 73047311.
(32) Jinglan, Q.; Huixia, F.; Yang, X.; Oreshkin, A. I.; Tingna, S.; Hui, L.; Sheng, M.; Lan, C.; Kehui, W. Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 2015, 114, 126101126105.
(33) Wang, Y.; Rui, Z.; Gao, H.; Jing, Z.; Xu, B.; Qiang, S.; Yu, J. Metal adatoms-decorated silicene as hydrogen storage media. Int. J. Hydrogen Energ. 2014, 39, 1402714032.
(34) Xin, T.; Cabrera, C. R.; Chen, Z. Metallic BSi3 silicene: a promising high capacity anode material for lithium-ion batteries. J. Phys. Chem. C 2014, 118, 2583625843.
(35) Hwang, Y.; Yun, K. H.; Chung, Y. C. Carbon-free and two-dimensional cathode structure based on silicene for lithium-oxygen batteries: a first-principles calculation. J. Power Sources 2015, 275, 3237.
(36) Rugeramigabo, E. P.; Nagao, T.; Pfnür, H. Experimental investigation of two-dimensional plasmons in a DySi2 monolayer on Si(111). Phys. Rev. B 2008, 78, 1554026.
(37) Yang, L. M.; Bačić, V.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc. 2015, 137, 27572762.
(38) Yang, L. M.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Post-anti-van't Hoff-Le Bel motif in atomically thin germanium- copper alloy film. Phys. Chem. Chem. Phys. 2015, 17, 1754517551.
(39) Yang, L. M.; Popov, I. A.; Frauenheim, T.; Boldyrev, A. I.; Heine, T.; Bačić, V.; Ganz, E. Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. Phys. Chem. Chem. Phys. 2015, 17, 2604326048.
(40) Feng, B.; Fu, B.; Kasamatsu, S.; Ito, S.; Cheng, P.; Liu, C. C.; Feng, Y.; Wu, S.; Mahatha, S. K.; Sheverdyaeva, P.; Moras, P.; Arita, M.; Sugino, O.; Chiang, T. C.; Shimada, K.; Miyamoto, K.; Okuda, T.; Wu, K.; Chen, L.; Yao, Y.; Matsuda, I. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat. Commun. 2017, 8, 10076.
(41) Sun, Y.; Zhuo, Z.; Wu, X.; Yang, J. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano. Lett. 2017, 17, 27712777.
(42) Wang, Y.; Qiao, M.; Li, Y.; Chen, Z. A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. Nanoscale Horiz. 2018, 3, 327334.
(43) Exner, K.; Schleyer, P. V. R. Planar hexacoordinate carbon: a viable possibility. Science 2000, 290, 19371940.
(44) Wen, C.; Xie, Q.; Xiong, R.; Sa, B.; Miao, N.; Zhou, J.; Wu, B.; Sun, Z. Computational mining of the pressure effect on thermodynamic and thermoelectric properties of cubic Ca2Si. EPL 2018, 123, 670036.
(45) Xiong, R.; Sa, B.; Miao, N.; Li, Y. L.; Zhou, J.; Pan, Y.; Wen, C.; Wu, B.; Sun, Z. Structural stability and thermoelectric property optimization of Ca2Si. RSC Adv. 2017, 7, 89368943.
(46) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 1425114269.
(47) Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 2008, 29, 20442078.
(48) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1116911186.
(49) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 17581775.
(50) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 1795317979.
(51) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 1324413249.
(52) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(53) Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 1653316539.
(54) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192.
(55) Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 11871192.
(56) Poater, J.; Duran, M.; Sola, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev. 2005, 105, 39113947.
(57) Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 53975403.
(58) Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 25572567.
(59) Wang, Y.; Chen, L. Q.; Liu, Z. K. YPHON: a package for calculating phonons of polar materials. Comput. Phys. Commun. 2014, 185, 29502968.
(60) Bardeen, J.; Shockley, W. S. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 7280.
(61) Kou, L. Z.; Ma, Y. D.; Zhou, L. J.; Sun, Z. Q.; Gu, Y. T.; Du, A. J.; Smith, S.; Chen, C. F. High-mobility anisotropic transport in few-layer gamma-B-28 films. Nanoscale 2016, 8, 2011120117.
(62) Jun, D.; Cheng, Z. X. Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. Int. Edit. 2015, 54, 75727576.
(63) Deringer, V. L.; Zhang, W.; Rausch, P.; Mazzarello, R.; Dronskowski, R.; Wuttig, M. A chemical link between Ge-Sb-Te and In-Sb-Te phase-change materials. J. Mater. Chem. C 2015, 3, 95199523.
(64) Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 54615466.
(65) Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 44757.
(66) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147150.
|