REFERENCES
(1) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford 1999.
(2) Steiner, T. Hydrogen bonds from water molecules to aromatic acceptors in very high-resolution protein crystal structures. Biophy. Chem 2002, 95, 195201.
(3) Xantheas, S. S. Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 2000, 258, 225231.
(4) Znamenskiy, V. S.; Green, M. E. Quantum calculations on hydrogen bonds in certain water clusters show cooperative effects. J. Chem. Theo. Comput. 2007, 3, 103114.
(5) Yoo, S.; Aprà, E.; Zeng, X. C.; Xantheas, S. S. High-level ab initio electronic structure calculations of water clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16. J. Phys. Chem. Lett. 2014, 1, 31223127.
(6) Shields, R. M.; Temelso, B.; Archer, K. A.; Morrell, T. E.; Shields, G. C. Accurate predictions of water cluster formation, (H2O)n (n = 2~10). J. Phys. Chem. A 2010, 114, 1172511737.
(7) Satya, B.; Soohaeng, Y.; Aprà, E.; Xantheas, S. S.; Zeng, X. C. Lowest-energy structures of water clusters (H2O)11 and (H2O)13. J. Phys. Chem. A 2006, 110, 1178111784.
(8) Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J. Phys. Chem. A 2011, 115, 1203412046.
(9) Hodges, M. P.; Stone, A. J.; Xantheas, S. S. Contribution of many-body terms to the energy for small water clusters: a comparison of ab initio calculations and accurate model potentials. J. Phys. Chem. A 1997, 101, 91639168.
(10) Akase, D.; Aida, M. Distribution of topologically distinct isomers of water clusters and dipole moments of constituent water molecules at finite atmospheric temperatures. J. Phys. Chem. A 2014, 118, 79117924.
(11) Sloan, D. E. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353363.
(12) Kuo, J. L.; Coe, J. V.; Singer, S. J.; Band, Y. B.; Ojamäe, L. On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 2001, 114, 25272540.
(13) Anick, D. J. Polyhedral water clusters, I: formal consequences of the ice rules. J. Mol. Struc-Theochem. 2002, 587, 8796.
(14) Anick, D. J. Polyhedral water clusters, II: correlations of connectivity parameters with electronic energy and hydrogen bond lengths. J. Mol. Struc-Theochem. 2002, 587, 97110.
(15) Kirov, M. V.; Fanourgakis, G. S.; Xantheas, S. S. Identifying the most stable networks in polyhedral water clusters. Chem. Phys. Lett. 2008, 461, 180188.
(16) Kuo, J. L.; Ciobanu, C. V.; Ojamäe, L.; Shavitt, I.; Singer, S. J. Short H-bonds and spontaneous self-dissociation in (H2O)20: effects of h-bond topology. J. Chem. Phys. 2003, 118, 35833588.
(17) Anick, D. J. Application of database methods to the prediction of B3LYP-optimized polyhedral water cluster geometries and electronic energies. J. Chem. Phys. 2003, 119, 1244212456.
(18) Anick, D. J. O–H stretch modes of dodecahedral water clusters: a statistical ab initio study. J. Phys. Chem. A 2006, 110, 51355143.
(19) Iwata, S. Dispersion energy evaluated by using locally projected occupied and excited molecular orbitals for molecular interaction. J. Chem. Phys. 2011, 135, 09410112.
(20) Iwata, S.; Bandyopadhyay, P.; Xantheas, S. S. Cooperative roles of charge transfer and dispersionterms in hydrogen-bonded networks of (H2O)n, n = 6, 11, and 16. J. Phys. Chem. A 2013, 117, 66416651.
(21) Iwata, S. Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms. Phys. Chem. Chem. Phys. 2014, 16, 1131011317.
(22) Iwata, S.; Akase, D.; Aida, M.; Xantheas, S. S. Electronic origin of dependence of hydrogen bond strengths on next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H2O)n; n = 8, 20 and 24. Phys. Chem. Chem. Phys. 2016, 18, 1974619756.
(23) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 2006, 27, 17871799.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2013.
(25) Tang, L.; Shi, R.; Su, Y.; Zhao. J. J. Structures, stabilities and spectra properties of fused CH4 endohedral water cage (CH4)m(H2O)n clusters from DFT-D methods. J. Phys. Chem. A 2015, 119, 1097110979.
(26) Yuan, D.; Li, Y.; Ni, Z.; Pulay, P.; Li, W.; Li, S. Benchmark relative energies for large water clusters with the generalized energy-based fragmentation method. J. Chem. Theory. Comput. 2017, 13, 26962704.
(27) Mcdonald, S.; Ojamae, L.; Singer, S. J. Graph theoretical generation and analysis of hydrogen-bonded structures with applications to the neutral and protonated water cube and dodecahedral clusters. J. Phys. Chem. A 1998, 102, 28242832.
(28) Kirov, M. V. Atlas of optimal proton configurations of water clusters in the form of gas hydrate cavities. J. Struct. Chem. 2002, 43, 790797.
(29) Yoo, S.; Kirov, M. V.; Xantheas, S. S. Low-energy networks of the T-cage (H2O)24, cluster and their use in constructing periodic unit cells of the structure I (SI) hydrate lattice. J. Am. Chem. Soc. 2009, 131, 75647566.
|