REFERENCES
(1) Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano. Lett. 2013, 13, 29892992.
(2) Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. S.; Lim, J.; Gao, H.; Yan, R.; Pang, P. 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 2014, 26, 21372184.
(3) Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 2014, 43 69206937.
(4) Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods and nanobelts. Chem. Rev. 2014, 114, 93469384.
(5) Zhao, Z.; Sang, Y.; Cabot, A.; Liu, H. structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 2015, 27, 25572582.
(6) Tian, J.; Leng, Y.; Zhao, Z.; Xia, Y.; Sang, Y.; Hao, P.; Zhan, J.; Li, M.; Liu, H. Carbon quantumdots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano. Energy 2015, 11, 419427.
(7) Jiang, T.; Jia, C.; Zhang, L.; He, S.; Sang, Y.; Li, H.; Li, Y.; Xu, X.; Liu, H. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 2015, 7, 209217.
(8) Lai, L. L.; W, J. M. A facile solution approach to W, N co-doped TiO2 nanobelt thin films with high photocatalytic activity. J. Mater. Chem. A 2015, 3, 1586315868.
(9) Logar, M.; Bračko, I.; Potočnik, A.; Jančar, B. Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis. Langmuir 2014, 30, 48524862.
(10) Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140147.
(11) Zhao, Z.; Tian, J.; Wang, D.; Kang, X.; Sang, Y.; Liu, H.; Wang, J.; Chen, S.; Boughton, R. I.; Jiang, H. UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts. J. Mater. Chem. 2012, 22, 2339523403.
(12) Chen, G.; Ji, S.; Sang, Y.; Chang, S.; Wang, Y.; Hao, P.; Claverie, J.; Liu, H.; Yu, G. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale 2015, 7, 31173125.
(13) Zhou, W. J.; Leng, Y. H.; Hou, D. M.; Li, H. D.; Li, L. G.; Li, G. Q.; Liu. H.; Chen, S. W. Phase transformation and enhanced photocatalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts. Nanoscale 2014, 6, 46984704.
(14) Su, D.; Wang, J.; Tang, Y.; Liu, C.; Liu, L.; Han, X. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 42314233.
(15) Tsukamoto, D.; Ikeda, M.; Shiraishi, Y.; Hara, N.; Ichikuni, N.; Tanaka, S.; Hirai, T. Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3. Chem. Eur. J. 2011, 17, 98169824.
(16) Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J. Am. Chem. Soc. 2008, 130, 1615416155.
(17) Puddu, V.; Mokay, R.; Puma, G. L. Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chem. Commun. 2007, 47494751.
(18) Liu, K. I.; Hsueh, Y. C.; Chen, H. S.; Perng, T. P. Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application. J. Mater. Chem. A 2014, 2, 53875393.
(19) Rawal, S. B.; Bera, S.; Lee, W. I. Visible-light photocatalytic properties of W18O49/TiO2 and WO3/TiO2 heterocomposites. Catal. Lett. 2012, 142, 14821488.
(20) Reyes-Gil, K. R.; Stephens, Z. D.; Stavila, V.; Robinson, D. B. Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl. Mater. Inter. 2015, 7, 22022213.
(21) Richardson, J. J.; Bjornmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, 24902491.
(22) Li, H.; Pang, S.; Wu, S.; Feng, X.; Mullen, K.; Bubeck, C. Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics. J. Am. Chem. Soc. 2011, 133, 94239429.
(23) Alexander, M. F.; Fialkowski, M.; Alexander, M.; Alexander, M.; Fialkowski, K. M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420424.
(24) Xiao, F.; Wang, F.; Fu, Z.; Zheng, Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. J. Mater. Chem. 2012, 22, 28682877.
(25) Weng, B.; Niu, N.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D-1D nanocomposite photocatalyst. J. Catal. 2014, 309, 146155.
(26) Chen, Z.; Liu, S.; Yang, M. Q.; Xu, Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Inter. 2013, 5, 43094319.
(27) Zhang, J.; X, F. X.; Xiao, G.; Liu, B. Linker-assisted assembly of 1D TiO2 nanobelts/3D CdS nanospheres hybrid heterostructure as efficient visible light photocatalyst. Appl. Catal. A: Gen. 2016, 521, 5056.
(28) Liu, S.; Weng, B.; Tang, Z. R.; Xu, Y. J. Constructing one-dimensional silver nanowire doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale 2015, 7, 7861866.
(29) Zhang, J.; X, F. X.; Xiao, G.; Liu, B. Assembly of a CdS quantum dot-TiO2 nanobelt heterostructure for photocatalytic application: towards an efficient visible light photocatalyst via facile surface charge tuning. New J. Chem. 2015, 39, 279286.
(30) Zhang, J.; X, F. X. Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped onedimensional semiconductors toward photoredox catalysis. J. Mater. Chem. A 2017, 5, 2368123693.
(31) Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene-WO3 nanorod photocatalysts. Langmuir 2014, 30, 55745584.
(32) Xiao, F. X.; Miao, J.; Wang, H. Y.; Liu, B. Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J. Mater. Chem. A 2013, 1, 12229122238.
(33) Xiao, F. X.; Zeng, Z.; Liu, B. Bridging the gap: electron relay and plasmonic sensitization of metal nanocrystals for metal clusters. J. Am. Chem. Soc. 2015, 137, 1073510744.
(34) Xiao, F. X.; Zeng, Z.; Hsu, S. H.; Chen, H. M.; Liu, B. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis. ACS Appl. Mater. Inter. 2015, 7, 2810528109.
(35) Huang, L.; Xu, H.; Li, Y.; Li, H.; Cheng, X.; Xia, J.; Xu, Y.; Cai, G. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013, 42, 86068616.
(36) Xiao, F. X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Inter. 2012, 4, 70557063.
(37) Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Graphene oxide as a surfactant and support for in-situ synthesis of Au-Pd nanoalloys with improved visible light photocatalytic activity. J. Phys. Chem. C 2014, 118, 52995308.
(38) Yuan, L.; Yang, M. Q.; Xu, Y. J. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity. Nanoscale 2014, 6, 63356345.
|