REFERENCES
(1) Xiao, S. J.; Zhao, X. J.; Chu, Z. J.; Xu, H.; Liu, G. Q.; Huang, C. Z.; Zhang, L. New off-on sensor for captopril sensing based on photoluminescent MoOx quantum dots. ACS Omega. 2017, 2, 1666–1671.
(2) Wang, Y.; Zhang, X.; Luo, Z.; Huang, X.; Tan, C.; Li, H.; Zheng, B.; Li, B.; Huang, Y.; Yang, J.; Zong, Y.; Ying, Y.; Zhang, H. Liquidphase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 2014, 6, 12340−12344.
(3) Prasomsri, T.; Nimmanwudipong, T.; Román-Leshkov, Y. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy Environ. Sci. 2013, 6, 1732–1738.
(4) Huang, Y.; Hu, Y. L.; Ye, F. H.; Fang, Y. M. Lignin pyrolysis and in situ hydrodeoxygenation over MoO3: interaction between MoO3 and lignin. Energy Fuels. 2017, 31, 8356–8362.
(5) Wyrwas, R. B.; Robertson, E. M.; Jarrold, C. C. Reactions between CO and small molybdenum suboxide cluster anions. J. Chem. Phys. 2007, 126, 214309–8.
(6) Wyrwas, R. B.; Jarrold, C. C. Production of C6O6− from oligomerization of CO on molybdenum anions. J. Am. Chem. Soc. 2006, 128, 13688–13689.
(7) Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 2010, 133, 024305–10.
(8) Ray, M.; Waller, S. E.; Jarrold, C. C. Effect of alkyl group on MxOy− + ROH (M = Mo, W; R = Me, Et) reaction rates. J. Phys. Chem. A 2016, 120, 1508–1519.
(9) Ramabhadran, R. O.; Mann, J. E.; Waller, S. E.; Rothgeb, D. W.; Jarrold, C. C.; Raghavachari, K. New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J. Am. Chem. Soc. 2013, 135, 17039–17051.
(10) Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Jarrold, C. C.; Raghavachari, K. Water reactivity with tungsten oxides: H2 production and kinetic traps. J. Chem. Phys. 2009, 131, 144302–8.
(11) Chary, K. V. R.; Bhaskar, T.; Kishan, G.; Reddy, K. R. Characterization and reactivity of molybdenum oxide catalysts supported on niobia. J. Phys. Chem. B 2001, 105, 4392–4399.
(12) Li, Z. J.; Fang, Z. T.; Kelley, M. S.; Kay, B. D.; Rousseau, R.; Dohnalek, Z.; Dixon, D. A. Ethanol conversion on cyclic (MO3)3 (M = Mo, W) clusters. J. Phys. Chem. C 2014, 118, 4869–4877.
(13) Guan, J. X.; Liang, Y.; Yang, J.; Yang, X. C.; Jia, J. X. Density functional theory studies on the mechanism of activation formic acid catalyzed by transition metal oxide MoO. Chin. J. Struct. Chem. 2018, 37, 11751185.
(14) Rosado-Reyes, C. M.; Francisco, J. S. Atmospheric oxidation pathways of acetic acid. J. Phys. Chem. A 2006, 110, 4419–4433.
(15) Kawamura, K.; Ng, L. L.; Kaplan, I. R. Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils Environ. Sci. Technol. 1985, 19, 1082–1086.
(16) Imamura, S. I.; Hlrano, A.; Kawabata, N. Wet oxidation of acetic acid catalyzed by Co–Bi complex oxides. Ind. Enp. Chem. Prd. Res. Dev. 1982, 21, 570–575.
(17) Gao, X. Z.; Liang, Y.; Meng, X. J.; Yang, X. C.; Jia, J. X.; Xu, W. G. DFT study of oxygenated organic pollutants catalyzed by molybdenum oxides: comparison of reaction mechanisms of MoOx + HCHO (x = 1, 2, 3). Chin. J. Struct. Chem. 2019, 38, 1229–1240.
(18) Pacchioni, G. Oxygen vacancy: the invisible agent on oxide surfaces. ChemPhysChem. 2003, 4, 1041–1047.
(19) Barckholtz, T. A.; Bursten, B. E. On the possible structures of Mn2(CO)8: theoretical support for an unprecedented asymmetric unbridged isomer. J. Am. Chem. Soc. 1998, 120, 1926–1927.
(20) Niu, S. X.; Hall, M. B. Theoretical studies on reactions of transition-metal complexes. Chem. Rev. 2000, 100, 353–406.
(21) Ding, K. N.; Xia, X. Z.; Lv, X.; Li, J. J. DFT investigation of the adsorption/dissociation mechanisms of methyl nitrite on the Pd(111) surface. Chin. J. Struct. Chem. 2013, 32, 936–948.
(22) Carreón-Macedo, J. L.; Harvey, J. N. Computational study of the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. Phys. Chem. Chem. Phys. 2006, 8, 93–100.
(23) Bühl, M.; Kabrede, H. Geometries of transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2006, 2, 1282–1290.
(24) Ziegler, T.; Autschbach, J. Theoretical methods of potential use for studies of inorganic reaction mechanisms. Chem. Rev. 2005, 105, 2695–2722.
(25) Straub, B. F. Pd(0) mechanism of palladium-catalyzed cyclopropanation of alkenes by CH2N2: a DFT study. J. Am. Chem. Soc. 2002, 124, 14195–14201.
(26) Frenking, G.; Frohlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 2000, 100, 717–774.
(27) Cundari, T. R.; Deng, J.; Zhao, Y. ONIOM study of the active species in Pd-phosphine catalyzed coupling reactions. J. Mol. Struct. (Theochem.) 2003, 632, 121–129.
(28) Deeth, R. J.; Smith, A.; Brown, J. M. Electronic control of the regiochemistry in palladium-phosphine catalysed intermolecular heck reactions. J. Am. Chem. Soc. 2004, 126, 7144–7151.
(29) Bamgbelu, A.; Wang, J.; Leszczynski, J. TDDFT study of the optical properties of Cy5 and its derivatives. J. Phys. Chem. A 2010, 114, 3551–3555.
(30) Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. Chem. Eng. Data 2012, 57, 2442–2455.
(31) Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209–4217.
(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT 2009.
(33) Becke, A. D. Density-functional thermochemistry Ⅲ, the role of exact exchange. J. Phys. Chem. 1993, 98, 5648–5652
(34) Lee, C.; Parr, R. G.; Yang, W. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789.
(35) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.
(36) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.
(37) Kundu, S.; Mondal, D.; Bhattacharya, K.; Endo, A.; Sanna, D.; Garribba, E.; Chaudhury, M. Nonoxido vanadium(IV) compounds involving dithiocarbazate-based tridentate ONS ligands: synthesis, electronic and molecular structure, spectroscopic and redox properties. Inorg. Chem. 2015, 54, 6203–6215.
(38) Dunning, T. H. Gaussian basis functions for use in molecular calculations. I. contraction of (9s5p)(9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1970, 53, 2823–2833.
(39) Huzinaga, S. J. Gaussian-type functions for polyatomic systems. J. Chem. Phys. 1965, 42, 1293–1302.
(40) Zhao, Y.; Feng, X. J.; Xie, Y. M.; Bruce, K. R.; Schaefer, H. F. Molybdenum-molybdenum multiple bonding in homoleptic molybdenum carbonyls: comparison with their chromium analogues. J. Phys. Chem. A 2012, 116, 5698–5706.
(41) Ermias, G. L.; Rao, T. L.; Tsung, F. T.; Chi, L. C.; Jyh, C. J. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study. J. Phys. Chem. A 2013, 117, 7959–7969.
(42) Sandrone, G.; Dixon, D. A. A periodic density functional theory and Hartree-fock study of alkali halides with gaussian orbitals angulo. J. Phys. Chem. A 1998, 102, 10310–10317.
(43) Bottoni, A. Theoretical study of the hydrogen and chlorine abstraction from chloromethanes by silyl and trichlorosilyl radicals: a comparison between the Hartree-fock method, perturbation theory, and density functional theory. J. Phys. Chem. A 1998, 102, 10142–10150.
(44) Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
(45) Lv, L. L.; Yang, S. S.; Yuan, K. K.; Wang, X. F.; Wang, Y. C. Theoretical study on the excited-state intramolecular hydrogen abstraction reactions of butanal. Chin. J. Struct. Chem. 2009, 28, 1226–1235.
(46) Zhang, H. J.; Chen, S. L.; Zhong, J.; Zhang, S. W.; Zhang, Y. H.; Zhang, X. H.; Li, Z. S.; Zeng, X. C. Formation of aqueous-phase sulfate during the haze period in china: kinetics and atmospheric implications. Atmos. Environ. 2018, 177, 93–99.
(47) Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272−286.
(48) Abolfazl, S.; Ehsan, Z. DFT calculations and NBO analysis of 2-chloroethylethyldichlorosilane unimolecular elimination kinetics in the gas phase. Chin. J. Struct. Chem. 2012, 31, 625–634.
(49) De Smedt, F.; Bui, X. V.; Nguyen, T. L.; Peeters, J.; Vereecken, L. Theoretical and experimental study of the product branching in the reaction of acetic acid with OH radicals. J. Phys. Chem. A 2005, 109, 2401–2409.
(50) Yang, Y.; Xu, H. X.; Cao, D. P.; Zeng, X. C.; Cheng, D. J. Hydrogen production via efficient formic acid decomposition: engineering the surface structure of Pd-based alloy catalysts by design. ACS Catal. 2019, 9, 781–790.
(51) Koroteev, V. O.; Bulushev, D. A.; Chuvilin, A. L.; Okotrub, A. V.; Bulusheva, L. G. Nanometer-sized MoS2 clusters on graphene flakes for catalytic formic acid decomposition. ACS Catal. 2014, 4, 3950–3956.
(52) Lu, G. Q.; Crown, A.; Wieckowski, A. Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J. Phys. Chem. B 1999, 103, 9700–9711.
|