REFERENCES
(1) Gholizadeh Khasevani, S.; Gholami, M. R. Synthesis of BiOI/ZnFe2O4-metal-organic framework and g-C3N4-based nanocomposites
for applications in photocatalysis. Ind. Eng. Chem. Res. 2019, 58, 9806–9818.
(2) Wo, R.; Li, Q. L.; Zhu, C.; Zhang, Y.; Qiao, G. F.; Lei, K. Y.; Du, P.; Jiang, W. Preparation and characterization of functionalized metal-organic
frameworks with core/shell magnetic particles (Fe3O4@SiO2@MOFs) for the removal of congo red and methylene blue from water solution.
J. Chem. Eng. Data 2019, 64, 2455–2463.
(3) Yu, Y.; Zhao, C.; Liu, X.; Sui, M.; Meng, Y. Selective flocculation of pollutants in wastewater using pH responsive HM-alginate/chitosan complexes. J. Environ. Chem. Eng. 2017, 5, 5406–5410.
(4) Soltani, T.; Entezari, M. H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of
Rhodamine B under solar light irradiation. Chem. Eng. J. 2013, 223, 145–154.
(5) Anirudhan, T. S.; Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225.
(6) Ciardelli, G.; Corsi, L.; Marcucci, M. Membrane separation for wastewater reuse in the textile industry. Resour.,
Conserv. Recycl. 2001, 31, 189–197.
(7) Liang, Y. H.; Shang, R.; Lu, J. R.; Liu, L.; Hu, J. S.; Cui, W. Q. Ag3PO4@UMOFNs core-shell structure: two-dimensional MOFs promoted photoinduced charge separation and photocatalysis. ACS Appl. Mater. Inter. 2018, 10, 8758–8769.
(8) Zhao, H. M.; Xia, Q. S.; Xing, H. Z.; Chen, D. S.; Wang, H. Construction of pillared-layer MOF as efficient visible-light photocatalysts
for aqueous Cr(VI) reduction and dye degradation. ACS Sustainable Chem. Eng. 2017, 5, 4449–4456.
(9) Li, Y. Y.; Jiang, J.; Fang, Y.; Cao, Z. L.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. TiO2 nanoparticles anchored onto the metal-organic
framework NH2-MIL-88B(Fe) as an adsorptive photocatalyst with enhanced Fenton-like degradation of organic pollutants under visible light irradiation. ACS Sustainable Chem. Eng. 2018, 6, 16186–16197.
(10) Li, M. H.; Zheng, Z. J.; Zheng, Y. Q.; Cui, C.; Li, C. X.; Li, Z. Q. Controlled growth of metal-organic framework on up conversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl. Mater. Inter. 2017, 9, 2899–2905.
(11) Malik, A.; Nath, M.; Mohiyuddin, S.; Packirisamy, G. Multifunctional CdSNPs@ZIF-8: potential antibacterial agent against GFP-expressing Escherichia coli and Staphylococcus aureus and efficient photocatalyst for degradation of methylene blue. ACS Omeg. 2018, 3, 8288–8308.
(12) Robin, J.; Audebrand, N.; Poriel, C.; Canivet, J.; Calvez, G.; Roisnel, T.; Dorcet, V.; Roussel, P. A series of chiral metal-organic frameworks based on fluorene di- and tetra-carboxylates: syntheses, crystal structures and luminescence properties. CrystEngComm. 2017, 19, 2042–2056.
(13) McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5). Crys. Growth Des. 2013, 13, 5481–5486.
(14) Deria, P.; Bury, W.; Hod, I.; Kung, C. W.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates. Inorg. Chem. 2015, 54, 2182–2192.
(15) Zhang, M. H.; Xin, X. L.; Xiao, Z. Y.; Wang, R. M.; Zhang, L. L.; Sun, D. F. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C2/C1 hydrocarbon and oil/water separation. J. Mater. Chem. A 2017, 5, 116–1175.
(16) Liang, L. F.; Jiang, F. L.; Chen, Q. H.; Yuan, D. Q.; Hong, M. C. Ultra-microporous metal-organic framework with high concentration free carboxyl groups and Lewis basic sites for CO2 capture at ambient conditions. Chin. J. Struct. Chem. 2019, 38, 559–565.
(17) Li, P. Z.; Su, J.; Liang, J.; Liu, J.; Zhang, Y. Y.; Chen, H. Z.; Zhao, Y. L. A highly porous metal-organic framework for large organic molecule capture and chromatographic separation. Chem. Commun. 2017, 53, 3434–3437.
(18) Choi, S.; Kim, T.; Ji, H.; Lee, H. J.; Oh, M. Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 2016,138, 14434–14440.
(19) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoud, M. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-mof for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137, 13308–13318.
(20) Zhu, E. W.; Sun, J. J.; Jia, Y.; Qiao, Y.; Zhu, Y.; Che, G. B. Two cd(II) coordination polymers based on a flexible tricarboxylate ligand: syntheses, structures, and photoluminescence and catalytic properties. Chin. J. Struct. Chem. 2018, 37, 2003–2010.
(21) Zhang, X. J.; Xing, Y. H.; Sun, Z.; Han, J.; Zhang, Y. H.; Ge, M. F.; Niu, S. Y. A series of two-dimensional metal-organic frameworks based on the assembly of rigid and flexible carboxylate-containing mixed ligands with lanthanide metal salts. Cryst. Growth Des. 2007, 7, 2041–2046.
(22) Liu, T. F.; Lü, J.; Tian, C. B.; Cao, M. N.; Lin, Z. J.; Cao, R. Complexation of metal ions, including alkali-earth and lanthanide(III) ions, in aqueous solution by the ligand 2,2΄,6΄,2΄΄-terpyridyl. Inorg. Chem. 2011, 50, 2764–2771.
(23) Nijem, N.; Thissen, P.; Yao, Y. P.; Longo, R. C.; Roodenko, K.; Wu, H. H.; Zhao, Y. G.; Cho, K.; Li. J.; Langreth, D. C.; Chabal, Y. J. Understanding the preferential adsorption of CO2 over N2 in a flexible metal-organic framework. J. Am. Chem. Soc. 2011, 133, 12849–12857.
(24) Li, H. J.; Zhao, B.; Ding, R.; Jia, Y. Y.; Hou, H. W.; Fan, Y. T. Structural diversity for a series of novel Zn metal-organic frameworks based on different secondary building units. Cryst. Growth Des. 2012, 12, 4170–4179.
(25) Cui, P. P.; Wu, J. L.; Zhao, X. L.; Sun, D.; Zhang, L. L.; Guo, J.; Sun, D. F. Two solvent-dependent zinc(II) supramolecular isomers: rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand. Cryst. Growth Des. 2011, 11, 5182–5187.
(26) Zhang, M. Y.; Shan, W. J.; Han, Z. B. Syntheses and magnetic properties of three Mn(II) coordination polymers based on a tripodal flexible ligand. CrystEngComm. 2012, 14, 1568–1574.
(27) Han, Z. B.; Zhang, G. X.; Zeng, M. H.; Ge, C. H.; Zou, X. H.; Han, G. X. Synthesis, crystal structure and magnetic properties of two 3-D gadolinium complexes. CrystEngComm. 2009, 11, 2629–2633.
(28) Liang, L. L.; Cai, Y. G.; Weng, N. S.; Zhang, R. L.; Zhao, J. S.; Wang, J. F.; Wu, H. L. A novel uranyl complex UO2(tci)(C3H5N2)·H2O: synthesis, crystal structure and characterization. Inorg. Chem. Comm. 2009, 12, 86–88.
(29) Gao, H.; Lou, X. H.; Li, Q. T.; Du, W. J.; Xu, C. Three new coordination polymers based on tripodal flexible ligand: synthesis, structures and luminescent properties. Inorg. Chim. Acta 2014, 412, 46–51.
(30) Han, Z. B.; Zhang, G. X. Solvothermal synthesis of two unique metal-organic frameworks: a 3-fold interpenetrating (3,4,5)-connected
network and a 2-fold interpenetrating (4,5)-connected network. CrystEngComm. 2010, 12, 348–351.
(31) Ghosh, S. K.; Zhang, J. P.; Kitagawa, S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew. Chem. Int. Ed. 2007, 46, 7965–7968.
(32) Sheldrick, G. M. SHELXL-97, Program for X-ray crystal Structure Refinement. University of Gottingen, Germany 1997.
(33) Spek, A. L. PLATON, A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, Netherlands 2002.
(34) Zheng, B.; Luo, J.; Wang, F.; Peng, Y.; Li, G.; Huo, Q.; Liu, Y. Construction of six coordination polymers based on a 5,5΄-(1,2-ethynyl)bis-1,3-benzenedicarboxylic ligand: synthesis, structure, gas sorption, and magnetic properties. Cryst. Growth Des. 2013, 13, 1033–1044.
(35) Chen, S. Y.; Yang, E.; Xie, C. L.; Liu, Y. Z.; Xiao, X. F. Synthesis, structure and luminescent property of a new Zn(Ⅱ) coordination polymer based
on 1,3,5-benzenetricarboxylate and 4,4΄-bipyridine ligands. Chin. J. Struct. Chem. 2015, 34, 235−240.
(36) Zhao, J.; Dong, W. W.; Wu, Y. P.; Wang, Y. N.; Wang, C.; Li, D. S.; Zhang, Q. C. Two (3,6)-connected porous metal-organic frameworks based on linear trinuclear [Co3(COO)6] and paddlewheel dinuclear [Cu2(COO)4] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties. J. Mater. Chem. A 2015, 3, 6962−6969.
(37) Chen, H.; Liu, Y. T.; Cai, T.; Dong, W. Y.; Tang, L.; Xia, X. N.; Wang, L. L.; Li, T. Boosting photocatalytic performance in mixed-valence MIL-53(Fe) by c hanging FeII/FeIII ratio. ACS Appl. Mater. Inter. 2019, 11, 28791−28800.
(38) Rodríguez, N. A.; Savateev, A.; Grela, M. A.; Dontsova, D. Facile synthesis of potassium poly(heptazine imide)(PHIK)/Ti-based metal-organic framework (MIL-125-NH2) composites for photocatalytic applications. ACS Appl. Mater. Inter. 2017, 9, 22941−22949.
|