REFERENCES
(1) Dunitz, J. D.; Gavezzotti, A. How molecules stick together in organic crystals: weak intermolecular interactions. Chem. Soc. Rev. 2009, 38, 26222633.
(2) Xiao, M.; Xian, Y.; Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the Marangoni effect and molecular recognition. Angew. Chem. Int. Edit. 2015, 54, 89528956.
(3) Seth, S. K.; Das, N. K.; Aich, K.; Sen, D.; Fun, H. K.; Goswami, S. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: insights from Hirshfeld surface analysis of their crystalline states. J. Mol. Struct. 2013, 1048, 157165.
(4) Schneider, H. J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Edit. 2009, 48, 39243977.
(5) Ling, A. R. LII. Studies on isomeric change. No. IV. Halogen derivatives of quinone. Part I. J. Chem. Soc., Trans. 1892, 61, 558581.
(6) Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen bonding without borders: an atoms-in-molecules perspective. J. Phys. Chem. A 2006, 110, 33493351.
(7) Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 2009, 38, 14301449.
(8) Liu, X. G.; Bao, S. S.; Li, Y. Z.; Zheng, L. M. Polymorphism in homochiral zinc phosphonates. Inorg. Chem. 2008, 47, 55255527.
(9) Nechipadappu, S. K.; Trivedi, D. R. Cocrystal of nutraceutical sinapic acid with active pharmaceutical ingredients ethenzamide and 2-chloro-4-nitrobenzoic acid: equilibrium solubility and stability study. J. Mol. Struct. 2018, 1171, 898905.
(10) Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem. 2018, 144, 817842.
(11) Qin, X.; Hao, Z.; Tian, Q.; Zhang, Z.; Zhou, C.; Xie, W. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J. Biol. Chem. 2014, 289, 2035920369.
(12) Ames, B.; Nguyen, C.; Bruegger, J.; Smith, P.; Xu, W.; Ma, S.; Wong, E.; Wong, S.; Xie, X.; Li, W. H.; Vederas, J.; Tang, Y.; Tsai, S. C. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc. Natl. Acad. Sci. 2012, 109, 1114411149.
(13) Shaikh, R.; Singh, R.; Walker, G. M.; Croker, D. M. Pharmaceutical cocrystal drug products: an outlook on product development. Trends Pharmacol. Sci. 2018, 39, 10331048.
(14) Yan, Y.; Chen, J.; Lu, T. B. Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm. 2013, 15, 64576460.
(15) Khan, E.; Shukla, A.; Jadav, N.; Telford, R.; Ayala, A. P.; Tandon, P.; Vangala, V. R. Study of molecular structure, chemical reactivity and H-bonding interactions in the cocrystal of nitrofurantoin with urea. New J. Chem. 2017, 41, 1106911078.
(16) Pandey, J.; Prajapati, P.; Shimpi, M.; Tandon, P.; Velaga, S.; Srivastava, D. A.; Sinha, K. Studies of molecular structure, hydrogen bonding and chemical activity of a nitrofurantoin-L-proline cocrystal: a combined spectroscopic and quantum chemical approach. RSC Adv. 2016, 6, 7413574154.
(17) Srivastava, K.; Khan, E.; Shimpi, M.; Tandon, P.; Sinha, K.; Velaga, S. Molecular structure and hydrogen bond interactions of a paracetamol-4,4'-bipyridine cocrystal studied using vibrational spectroscopic and quantum chemical approach. CrystEngComm. 2017, 20, 213222.
(18) Cabras, P.; Angioni, A.; Garau, V.; Melis, M.; Pirisi, F.; Cabitza, F.; Dedola, F.; Navickiene, S. Determination of buprofezin, pyridaben, and tebufenpyrad residues by gas chromatography-mass-selective detection in clementine citrus. J. Agric. Food Chem. 1998, 46, 42554259.
(19) Wang, Z.; Zhou, C.; Long, G. Y.; Yang, H.; Jin, D. C. Sublethal effects of buprofezin on development, reproduction, and chitin synthase 1 gene (SfCHS1) expression in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J. Asia-Pac. Entomol. 2018, 21, 585591.
(20) Ali, E.; Liao, X.; Yang, P.; Mao, K.; Zhang, X.; Shakeel, M.; Markaz, A.; Wan, H.; Li, J. Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci. Rep. 2017, 05, 169139.
(21) Zia Qureshi, I.; Bibi, A.; Shahid, S.; Ghazanfar, M. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L. ). Aquat. Toxicol. 2016, 179, 103114.
(22) Ji, X.; Ku, T.; Zhu, N.; Ning, X.; Wei, W.; Li, G.; Sang, N. Potential hepatic toxicity of buprofezin at sublethal concentrations: ros-mediated conversion of energy metabolism. J. Hazard. Mater. 2016, 320, 176186.
(23) Wang, G.; Xu, D.; Xiong, M.; Zhang, H.; Li, F.; Liu, Y. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp. J. Environ. Manage. 2016, 180, 5967.
(24) Zhu, Z.; Zhou, Y.; Yao, Q.; Sun, B.; Wang, M.; Zhong, X.; Wang, B.; Xue, Y.; Chen, X. Two polymorphs and a sulfate of buprofezin: crystal structure and Hirshfeld surface analysis. Polyhedron 2018, 155, 8593.
(25) Chen, X.; Zhou, Z.; Chen, J.; Chu, C.; Zheng, J.; Wang, S.; Jia, W.; Zhao, J.; Li, R.; Han, D. Solubility determination and thermodynamic modeling of buprofezin in different solvents and mixing properties of solutions. J. Chem. Eng. Data 2019, 64, 11771186.
|