REFERENCES
(1) Ramdass, A.; Sathish, V.; Babu, E.; Velayudham, M.; Thanasekaran, P.; Rajagopal, S. Recent developments on optical and electrochemical sensing of copper(II) ion based on transition metal complexes. Coord. Chem. Rev. 2017, 343, 278–307.
(2) Sun, C.; Xu, G.; Jiang, X. M.; Wang, G. E.; Guo, P. Y.; Wang, M. S.; Zheng, F. K. A design strategy for improving optical and electrical properties and stability of lead-halide semiconductors. J. Am. Chem. Soc. 2018, 140, 2805–2811.
(3) Chen, H. J.; Lyu, G. Y.; Yue, Y. F.; Wang, T. W.; Li, D. P.; Shi, H.; Xing, J. N.; Shao, J. Y.; Zhang, R.; Liu, J. Improving photovoltaic performance by installing alkyl chains perpendicular to π-conjugated plane of organic dye-sensitized solar cells. J. Mater. Chem. C 2019, 7, 7249–7258.
(4) Yang, J.; Zhang, F.; Wang, X.; He, D.; Wu, G.; Yang, Q.; Hong, X.; Wu, Y.; Li, Y. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 12854–12858.
(5) Kuang, H. M.; Zhang, Z. X.; Lin, L. Z.; Chen, H. L.; Chen, W. T. Preparation, structure, photoluminescence and energy transfer mechanism of a novel holmium complex. Chin. J. Struct. Chem. 2019, 38, 337–344.
(6) Wang, T. W.; Chen, H. J.; Zhang, R.; Liu, J. The research of down conversion materials based on metal-complexes for solar cells. Chin. J. Inorg. Chem. 2018, 34, 1007–1017.
(7) Wen, J. W.; Chen, W. T.; Zhang, Z. X.; Tao, W. J.; Liu, C. The mixed-ligand strategy to assemble a europium metal-organic framework with a 2-fold-interpenetrated network. J. Solid State Chem. 2018, 263, 30–35.
(8) Mendes, R. F.; Ananias, D.; Carlos, L. D.; Rocha, J.; Almeida Paz, F. A. Photoluminescent lanthanide-organic framework based on a tetraphosphonic acid linker. Cryst. Growth Des. 2017, 17, 5191–5199.
(9) Malakhovskii, A.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G. Transformation of the HoFe3(BO3)4 absorption spectra at reorientation magnetic transitions and local properties in the excited 5F5 states of the Ho3+ ion. Phys. Rev. B 2017, 96, 224430–224440.
(10) Yi, X. G.; Chen, W. T.; Huang, J. G.; Zhang, D. W.; Wang, Y. F. Synthesis, structure, photoluminescent and semiconductor properties of, and theoretical calculations for, a novel zinc complex. J. Chem. Res. 2017, 41, 586–590.
(11) Malecki, J. G.; Kruszynski, R.; Tabak, D. The reactions of 8-hydroxyquinoline with [RuHCl(CO)(PPh3)3]: a new ruthenium(II) carbonyl complex with a N-donor ligand. Polyhedron 2007, 26, 4201–4208.
(12) Yi, X. G.; Liu, Y. Z.; Fang, X. N.; Zhou, X. Y.; Li, Y. X. Crystal structure and properties of [PrCl(H2O)3(L)(HL)]nnCl (HL = 3-hydroxy-2-methylquinoline-4-carboxylic acid) with one-dimensional chains. Chin. J. Struct. Chem. 2019, 38, 325–330.
(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, M. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford, CT. Gaussion 09, Revision D. 01 2013.
(14) Sung, Y. C.; Jin, H. A.; Jae, D. H. Protein tyrosine phosphatase 1B inhibitors: heterocyclic carboxylic acids. Bull. Korean Chem. Soc. 2003, 24, 1455–1465.
(15) Yu, J. W.; Ning, L. N. A new method for the synthesis of indigo. J. Taiyuan Norm. Univer. (Natural Science Edition) 2016, 15, 77–80.
(16) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(17) Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122.
(18) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
(19) Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic crystal structure database. Acta Cryst. B 1985, 41, 244–247.
(20) Tian, L.; Yang, N.; Zhao, G. Syntheses, structures, and luminescent properties of zinc(II) complexes assembled with aromatic polycarboxylate and 1,3-bis(1,2,4-triazol-1-yl)propane. Inorg. Chem. Commun. 2010, 13, 1497–1500.
(21) Kozachuk, O.; Khaletshaya, K.; Halbherr, M. Microporous mixed-metal layer-pillared [Zn1-xCux(bdc)(dabco)0.5]MOFs: preparation and characterization. Eur. Inorg. Chem. 2012, 10, 1688–1695.
(22) Huang, F. Q.; Mitchell, K.; Ibers, J. A. New layered materials: syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5129.
(23) Becke, A. D. A new mixing of hartree-fock and local density functional theories. J. Chem. Phys. 1993, 98, 5648–5652.
(24) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789.
(25) Bensch, W.; Dűrichen, P.; Helmer, O.; Reller, A.; Sazama, U. Metal selective redox processes in the ternary compound ZrSiTe. Inorg. Chim. Acta 1996, 252, 47–53.
(26) Tillinski, R.; Rumpf, C.; Näther, C.; Dűrichen, P. Synthesis, crystal structures, and optical properties of new quaternary metal chalcogenides of group 5: Cs2AgVS4, K2AgVSe4, Rb2AgVSe4, Rb2AgNbS4, and Cs2AgNbSe4. Chem. Inform. 1998, 624, 1285–1290.
|